{
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField psisf = fvc::interpolate(psis);
surfaceScalarField rhof = fvc::interpolate(rho);
// Needs to be outside of loop since p is changing, but psi and rho are not
surfaceScalarField rhoReff = rhof - psisf*fvc::interpolate(p);
while (pimple.correct())
U = rUA*UEqn.H();
// Calculate phi for boundary conditions
phi = rhof*fvc::interpolate(U) & mesh.Sf();
surfaceScalarField phid2 = rhoReff/rhof*phi;
surfaceScalarField phid("phid", psisf/rhof*phi);
p.storePrevIter();
while (pimple.correctNonOrthogonal())
fvScalarMatrix pEqn
(
fvm::div(phid, p)
+ fvc::div(phid2)
- fvm::laplacian(rho*rUA, p)
);
pEqn.solve();
// Calculate the flux
if (pimple.finalNonOrthogonalIter())
phi = phid2 + pEqn.flux();
}
// Use incompressible continuity error check: div(rho U) = 0
# include "continuityErrs.H"
// Relax the pressure
p.relax();
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
// Bound the pressure
if (min(p) < pMin || max(p) > pMax)
p.max(pMin);
p.min(pMax);
p.correctBoundaryConditions();
// Bound the velocity
volScalarField magU = mag(U);
if (max(magU) > UMax)
volScalarField Ulimiter = pos(magU - UMax)*UMax/(magU + smallU)
+ neg(magU - UMax);
Ulimiter.max(scalar(0));
Ulimiter.min(scalar(1));
U *= Ulimiter;