This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/tutorials/MRFSimpleFoam/mixerVessel2D/constant/polyMesh/blockMeshDict

560 lines
17 KiB
Text
Raw Normal View History

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.5 |
| \\ / A nd | Web: http://www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// General macros to create 2D/extruded-2D meshes
//define(calc, [esyscmd(echo $1 | bc | tr -d \\n)])
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
convertToMeters 0.1;
// Hub radius
// Impeller-tip radius
// Baffle-tip radius
// Tank radius
// MRF region radius
// Thickness of 2D slab
// Base z
// Top z
// Number of cells radially between hub and impeller tip
// Number of cells radially in each of the two regions between
// impeller and baffle tips
// Number of cells radially between baffle tip and tank
// Number of cells azimuthally in each of the 8 blocks
// Number of cells in the thickness of the slab
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
vertices
(
(0.2 0 0) // Vertex r0b = 0
(0.2 0 0) // Vertex r0sb = 1
(0.141421356364228 -0.141421356110391 0) // Vertex r1b = 2
(3.58979347393082e-10 -0.2 0) // Vertex r2b = 3
(3.58979347393082e-10 -0.2 0) // Vertex r2sb = 4
(-0.141421355856554 -0.141421356618065 0) // Vertex r3b = 5
(-0.2 7.17958694786164e-10 0) // Vertex r4b = 6
(-0.2 7.17958694786164e-10 0) // Vertex r4sb = 7
(-0.141421355856554 0.141421356618065 0) // Vertex r5b = 8
(3.58979347393082e-10 0.2 0) // Vertex r6b = 9
(3.58979347393082e-10 0.2 0) // Vertex r6sb = 10
(0.141421356364228 0.141421356110391 0) // Vertex r7b = 11
(0.5 0 0) // Vertex rb0b = 12
(0.353553390910569 -0.353553390275978 0) // Vertex rb1b = 13
(8.97448368482705e-10 -0.5 0) // Vertex rb2b = 14
(-0.353553389641386 -0.353553391545162 0) // Vertex rb3b = 15
(-0.5 1.79489673696541e-09 0) // Vertex rb4b = 16
(-0.353553389641386 0.353553391545162 0) // Vertex rb5b = 17
(8.97448368482705e-10 0.5 0) // Vertex rb6b = 18
(0.353553390910569 0.353553390275978 0) // Vertex rb7b = 19
(0.6 0 0) // Vertex ri0b = 20
(0.424264069092683 -0.424264068331174 0) // Vertex ri1b = 21
(1.07693804217925e-09 -0.6 0) // Vertex ri2b = 22
(-0.424264067569663 -0.424264069854194 0) // Vertex ri3b = 23
(-0.6 2.15387608435849e-09 0) // Vertex ri4b = 24
(-0.424264067569663 0.424264069854194 0) // Vertex ri5b = 25
(1.07693804217925e-09 0.6 0) // Vertex ri6b = 26
(0.424264069092683 0.424264068331174 0) // Vertex ri7b = 27
(0.7 0 0) // Vertex Rb0b = 28
(0.494974747274797 -0.494974746386369 0) // Vertex Rb1b = 29
(1.25642771587579e-09 -0.7 0) // Vertex Rb2b = 30
(-0.49497474549794 -0.494974748163226 0) // Vertex Rb3b = 31
(-0.7 2.51285543175157e-09 0) // Vertex Rb4b = 32
(-0.49497474549794 0.494974748163226 0) // Vertex Rb5b = 33
(1.25642771587579e-09 0.7 0) // Vertex Rb6b = 34
(0.494974747274797 0.494974746386369 0) // Vertex Rb7b = 35
(1 0 0) // Vertex R0b = 36
(0.707106781821139 -0.707106780551956 0) // Vertex R1b = 37
(0.707106781821139 -0.707106780551956 0) // Vertex R1sb = 38
(1.79489673696541e-09 -1 0) // Vertex R2b = 39
(-0.707106779282772 -0.707106783090323 0) // Vertex R3b = 40
(-0.707106779282772 -0.707106783090323 0) // Vertex R3sb = 41
(-1 3.58979347393082e-09 0) // Vertex R4b = 42
(-0.707106779282772 0.707106783090323 0) // Vertex R5b = 43
(-0.707106779282772 0.707106783090323 0) // Vertex R5sb = 44
(1.79489673696541e-09 1 0) // Vertex R6b = 45
(0.707106781821139 0.707106780551956 0) // Vertex R7b = 46
(0.707106781821139 0.707106780551956 0) // Vertex R7sb = 47
(0.2 0 0.1) // Vertex r0t = 48
(0.2 0 0.1) // Vertex r0st = 49
(0.141421356364228 -0.141421356110391 0.1) // Vertex r1t = 50
(3.58979347393082e-10 -0.2 0.1) // Vertex r2t = 51
(3.58979347393082e-10 -0.2 0.1) // Vertex r2st = 52
(-0.141421355856554 -0.141421356618065 0.1) // Vertex r3t = 53
(-0.2 7.17958694786164e-10 0.1) // Vertex r4t = 54
(-0.2 7.17958694786164e-10 0.1) // Vertex r4st = 55
(-0.141421355856554 0.141421356618065 0.1) // Vertex r5t = 56
(3.58979347393082e-10 0.2 0.1) // Vertex r6t = 57
(3.58979347393082e-10 0.2 0.1) // Vertex r6st = 58
(0.141421356364228 0.141421356110391 0.1) // Vertex r7t = 59
(0.5 0 0.1) // Vertex rb0t = 60
(0.353553390910569 -0.353553390275978 0.1) // Vertex rb1t = 61
(8.97448368482705e-10 -0.5 0.1) // Vertex rb2t = 62
(-0.353553389641386 -0.353553391545162 0.1) // Vertex rb3t = 63
(-0.5 1.79489673696541e-09 0.1) // Vertex rb4t = 64
(-0.353553389641386 0.353553391545162 0.1) // Vertex rb5t = 65
(8.97448368482705e-10 0.5 0.1) // Vertex rb6t = 66
(0.353553390910569 0.353553390275978 0.1) // Vertex rb7t = 67
(0.6 0 0.1) // Vertex ri0t = 68
(0.424264069092683 -0.424264068331174 0.1) // Vertex ri1t = 69
(1.07693804217925e-09 -0.6 0.1) // Vertex ri2t = 70
(-0.424264067569663 -0.424264069854194 0.1) // Vertex ri3t = 71
(-0.6 2.15387608435849e-09 0.1) // Vertex ri4t = 72
(-0.424264067569663 0.424264069854194 0.1) // Vertex ri5t = 73
(1.07693804217925e-09 0.6 0.1) // Vertex ri6t = 74
(0.424264069092683 0.424264068331174 0.1) // Vertex ri7t = 75
(0.7 0 0.1) // Vertex Rb0t = 76
(0.494974747274797 -0.494974746386369 0.1) // Vertex Rb1t = 77
(1.25642771587579e-09 -0.7 0.1) // Vertex Rb2t = 78
(-0.49497474549794 -0.494974748163226 0.1) // Vertex Rb3t = 79
(-0.7 2.51285543175157e-09 0.1) // Vertex Rb4t = 80
(-0.49497474549794 0.494974748163226 0.1) // Vertex Rb5t = 81
(1.25642771587579e-09 0.7 0.1) // Vertex Rb6t = 82
(0.494974747274797 0.494974746386369 0.1) // Vertex Rb7t = 83
(1 0 0.1) // Vertex R0t = 84
(0.707106781821139 -0.707106780551956 0.1) // Vertex R1t = 85
(0.707106781821139 -0.707106780551956 0.1) // Vertex R1st = 86
(1.79489673696541e-09 -1 0.1) // Vertex R2t = 87
(-0.707106779282772 -0.707106783090323 0.1) // Vertex R3t = 88
(-0.707106779282772 -0.707106783090323 0.1) // Vertex R3st = 89
(-1 3.58979347393082e-09 0.1) // Vertex R4t = 90
(-0.707106779282772 0.707106783090323 0.1) // Vertex R5t = 91
(-0.707106779282772 0.707106783090323 0.1) // Vertex R5st = 92
(1.79489673696541e-09 1 0.1) // Vertex R6t = 93
(0.707106781821139 0.707106780551956 0.1) // Vertex R7t = 94
(0.707106781821139 0.707106780551956 0.1) // Vertex R7st = 95
);
blocks
(
// block0
hex (0 2 13 12 48 50 61 60)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block1
hex (2 4 14 13 50 52 62 61)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block2
hex (3 5 15 14 51 53 63 62)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block3
hex (5 7 16 15 53 55 64 63)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block4
hex (6 8 17 16 54 56 65 64)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block5
hex (8 10 18 17 56 58 66 65)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block6
hex (9 11 19 18 57 59 67 66)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block7
hex (11 1 12 19 59 49 60 67)
rotor
(12 12 1)
simpleGrading (1 1 1)
// block0
hex (12 13 21 20 60 61 69 68)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block1
hex (13 14 22 21 61 62 70 69)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block2
hex (14 15 23 22 62 63 71 70)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block3
hex (15 16 24 23 63 64 72 71)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block4
hex (16 17 25 24 64 65 73 72)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block5
hex (17 18 26 25 65 66 74 73)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block6
hex (18 19 27 26 66 67 75 74)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block7
hex (19 12 20 27 67 60 68 75)
rotor
(12 4 1)
simpleGrading (1 1 1)
// block0
hex (20 21 29 28 68 69 77 76)
(12 4 1)
simpleGrading (1 1 1)
// block1
hex (21 22 30 29 69 70 78 77)
(12 4 1)
simpleGrading (1 1 1)
// block2
hex (22 23 31 30 70 71 79 78)
(12 4 1)
simpleGrading (1 1 1)
// block3
hex (23 24 32 31 71 72 80 79)
(12 4 1)
simpleGrading (1 1 1)
// block4
hex (24 25 33 32 72 73 81 80)
(12 4 1)
simpleGrading (1 1 1)
// block5
hex (25 26 34 33 73 74 82 81)
(12 4 1)
simpleGrading (1 1 1)
// block6
hex (26 27 35 34 74 75 83 82)
(12 4 1)
simpleGrading (1 1 1)
// block7
hex (27 20 28 35 75 68 76 83)
(12 4 1)
simpleGrading (1 1 1)
// block0
hex (28 29 38 36 76 77 86 84)
(12 12 1)
simpleGrading (1 1 1)
// block1
hex (29 30 39 37 77 78 87 85)
(12 12 1)
simpleGrading (1 1 1)
// block2
hex (30 31 41 39 78 79 89 87)
(12 12 1)
simpleGrading (1 1 1)
// block3
hex (31 32 42 40 79 80 90 88)
(12 12 1)
simpleGrading (1 1 1)
// block4
hex (32 33 44 42 80 81 92 90)
(12 12 1)
simpleGrading (1 1 1)
// block5
hex (33 34 45 43 81 82 93 91)
(12 12 1)
simpleGrading (1 1 1)
// block6
hex (34 35 47 45 82 83 95 93)
(12 12 1)
simpleGrading (1 1 1)
// block7
hex (35 28 36 46 83 76 84 94)
(12 12 1)
simpleGrading (1 1 1)
);
edges
(
arc 0 2 (0.184775906536601 -0.0765366863901046 0)
arc 2 4 (0.0765366867217582 -0.184775906399226 0)
arc 3 5 (-0.0765366860584508 -0.184775906673977 0)
arc 5 7 (-0.18477590626185 -0.0765366870534118 0)
arc 6 8 (-0.18477590626185 0.0765366870534118 0)
arc 8 10 (-0.0765366860584508 0.184775906673977 0)
arc 9 11 (0.0765366867217582 0.184775906399226 0)
arc 11 1 (0.184775906536601 0.0765366863901046 0)
arc 12 13 (0.461939766341503 -0.191341715975262 0)
arc 13 14 (0.191341716804395 -0.461939765998065 0)
arc 14 15 (-0.191341715146127 -0.461939766684942 0)
arc 15 16 (-0.461939765654626 -0.19134171763353 0)
arc 16 17 (-0.461939765654626 0.19134171763353 0)
arc 17 18 (-0.191341715146127 0.461939766684942 0)
arc 18 19 (0.191341716804395 0.461939765998065 0)
arc 19 12 (0.461939766341503 0.191341715975262 0)
arc 20 21 (0.554327719609804 -0.229610059170314 0)
arc 21 22 (0.229610060165275 -0.554327719197677 0)
arc 22 23 (-0.229610058175352 -0.55432772002193 0)
arc 23 24 (-0.554327718785551 -0.229610061160235 0)
arc 24 25 (-0.554327718785551 0.229610061160235 0)
arc 25 26 (-0.229610058175352 0.55432772002193 0)
arc 26 27 (0.229610060165275 0.554327719197677 0)
arc 27 20 (0.554327719609804 0.229610059170314 0)
arc 28 29 (0.646715672878104 -0.267878402365366 0)
arc 29 30 (0.267878403526154 -0.64671567239729 0)
arc 30 31 (-0.267878401204578 -0.646715673358918 0)
arc 31 32 (-0.646715671916476 -0.267878404686941 0)
arc 32 33 (-0.646715671916476 0.267878404686941 0)
arc 33 34 (-0.267878401204578 0.646715673358918 0)
arc 34 35 (0.267878403526154 0.64671567239729 0)
arc 35 28 (0.646715672878104 0.267878402365366 0)
arc 36 38 (0.923879532683006 -0.382683431950523 0)
arc 37 39 (0.382683433608791 -0.923879531996129 0)
arc 39 41 (-0.382683430292254 -0.923879533369883 0)
arc 40 42 (-0.923879531309252 -0.382683435267059 0)
arc 42 44 (-0.923879531309252 0.382683435267059 0)
arc 43 45 (-0.382683430292254 0.923879533369883 0)
arc 45 47 (0.382683433608791 0.923879531996129 0)
arc 46 36 (0.923879532683006 0.382683431950523 0)
arc 48 50 (0.184775906536601 -0.0765366863901046 0.1)
arc 50 52 (0.0765366867217582 -0.184775906399226 0.1)
arc 51 53 (-0.0765366860584508 -0.184775906673977 0.1)
arc 53 55 (-0.18477590626185 -0.0765366870534118 0.1)
arc 54 56 (-0.18477590626185 0.0765366870534118 0.1)
arc 56 58 (-0.0765366860584508 0.184775906673977 0.1)
arc 57 59 (0.0765366867217582 0.184775906399226 0.1)
arc 59 49 (0.184775906536601 0.0765366863901046 0.1)
arc 60 61 (0.461939766341503 -0.191341715975262 0.1)
arc 61 62 (0.191341716804395 -0.461939765998065 0.1)
arc 62 63 (-0.191341715146127 -0.461939766684942 0.1)
arc 63 64 (-0.461939765654626 -0.19134171763353 0.1)
arc 64 65 (-0.461939765654626 0.19134171763353 0.1)
arc 65 66 (-0.191341715146127 0.461939766684942 0.1)
arc 66 67 (0.191341716804395 0.461939765998065 0.1)
arc 67 60 (0.461939766341503 0.191341715975262 0.1)
arc 68 69 (0.554327719609804 -0.229610059170314 0.1)
arc 69 70 (0.229610060165275 -0.554327719197677 0.1)
arc 70 71 (-0.229610058175352 -0.55432772002193 0.1)
arc 71 72 (-0.554327718785551 -0.229610061160235 0.1)
arc 72 73 (-0.554327718785551 0.229610061160235 0.1)
arc 73 74 (-0.229610058175352 0.55432772002193 0.1)
arc 74 75 (0.229610060165275 0.554327719197677 0.1)
arc 75 68 (0.554327719609804 0.229610059170314 0.1)
arc 76 77 (0.646715672878104 -0.267878402365366 0.1)
arc 77 78 (0.267878403526154 -0.64671567239729 0.1)
arc 78 79 (-0.267878401204578 -0.646715673358918 0.1)
arc 79 80 (-0.646715671916476 -0.267878404686941 0.1)
arc 80 81 (-0.646715671916476 0.267878404686941 0.1)
arc 81 82 (-0.267878401204578 0.646715673358918 0.1)
arc 82 83 (0.267878403526154 0.64671567239729 0.1)
arc 83 76 (0.646715672878104 0.267878402365366 0.1)
arc 84 86 (0.923879532683006 -0.382683431950523 0.1)
arc 85 87 (0.382683433608791 -0.923879531996129 0.1)
arc 87 89 (-0.382683430292254 -0.923879533369883 0.1)
arc 88 90 (-0.923879531309252 -0.382683435267059 0.1)
arc 90 92 (-0.923879531309252 0.382683435267059 0.1)
arc 91 93 (-0.382683430292254 0.923879533369883 0.1)
arc 93 95 (0.382683433608791 0.923879531996129 0.1)
arc 94 84 (0.923879532683006 0.382683431950523 0.1)
);
patches
(
wall rotor
(
(0 2 50 48)
(2 4 52 50)
(3 5 53 51)
(5 7 55 53)
(6 8 56 54)
(8 10 58 56)
(9 11 59 57)
(11 1 49 59)
(0 12 60 48)
(1 12 60 49)
(3 14 62 51)
(4 14 62 52)
(6 16 64 54)
(7 16 64 55)
(9 18 66 57)
(10 18 66 58)
)
wall stator
(
(36 38 86 84)
(37 39 87 85)
(39 41 89 87)
(40 42 90 88)
(42 44 92 90)
(43 45 93 91)
(45 47 95 93)
(46 36 84 94)
(37 29 77 85)
(38 29 77 86)
(40 31 79 88)
(41 31 79 89)
(43 33 81 91)
(44 33 81 92)
(46 35 83 94)
(47 35 83 95)
)
empty front
(
(48 50 61 60)
(50 52 62 61)
(51 53 63 62)
(53 55 64 63)
(54 56 65 64)
(56 58 66 65)
(57 59 67 66)
(59 49 60 67)
(60 61 69 68)
(61 62 70 69)
(62 63 71 70)
(63 64 72 71)
(64 65 73 72)
(65 66 74 73)
(66 67 75 74)
(67 60 68 75)
(68 69 77 76)
(69 70 78 77)
(70 71 79 78)
(71 72 80 79)
(72 73 81 80)
(73 74 82 81)
(74 75 83 82)
(75 68 76 83)
(76 77 86 84)
(77 78 87 85)
(78 79 89 87)
(79 80 90 88)
(80 81 92 90)
(81 82 93 91)
(82 83 95 93)
(83 76 84 94)
)
empty back
(
(0 12 13 2)
(2 13 14 4)
(3 14 15 5)
(5 15 16 7)
(6 16 17 8)
(8 17 18 10)
(9 18 19 11)
(11 19 12 1)
(12 20 21 13)
(13 21 22 14)
(14 22 23 15)
(15 23 24 16)
(16 24 25 17)
(17 25 26 18)
(18 26 27 19)
(19 27 20 12)
(20 28 29 21)
(21 29 30 22)
(22 30 31 23)
(23 31 32 24)
(24 32 33 25)
(25 33 34 26)
(26 34 35 27)
(27 35 28 20)
(28 36 38 29)
(29 37 39 30)
(30 39 41 31)
(31 40 42 32)
(32 42 44 33)
(33 43 45 34)
(34 45 47 35)
(35 46 36 28)
)
);
// ************************************************************************* //