This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/incompressible/icoDyMFoam/icoDyMFoam.C

150 lines
4.1 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
icoDyMFoam
Description
Transient solver for incompressible, laminar flow of Newtonian fluids
with dynamic mesh.
Author
Hrvoje Jasak, Wikki Ltd. All rights reserved.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
# include "initContinuityErrs.H"
# include "initTotalVolume.H"
# include "createFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "checkTotalVolume.H"
# include "CourantNo.H"
# include "setDeltaT.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
# include "volContinuity.H"
if (correctPhi && meshChanged)
{
// Fluxes will be corrected to absolute velocity
// HJ, 6/Feb/2009
# include "correctPhi.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
if (meshChanged)
{
# include "CourantNo.H"
}
# include "UEqn.H"
// --- PISO loop
for (int corr=0; corr<nCorr; corr++)
{
rAU = 1.0/UEqn.A();
U = rAU*UEqn.H();
phi = (fvc::interpolate(U) & mesh.Sf());
//+ fvc::ddtPhiCorr(rAU, U, phi);
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(rAU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
if (corr == nCorr - 1 && nonOrth == nNonOrthCorr)
{
pEqn.solve(mesh.solutionDict().solver(p.name() + "Final"));
}
else
{
pEqn.solve(mesh.solutionDict().solver(p.name()));
}
if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}
# include "continuityErrs.H"
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();
}
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return(0);
}
// ************************************************************************* //