48 lines
1.2 KiB
C
48 lines
1.2 KiB
C
|
{
|
||
|
// Solve the enthalpy equation
|
||
|
T.storePrevIter();
|
||
|
|
||
|
// Calculate face velocity from flux
|
||
|
surfaceScalarField faceU
|
||
|
(
|
||
|
"faceU",
|
||
|
phi/fvc::interpolate(rho) + (SRF->faceU() & mesh.Sf())
|
||
|
);
|
||
|
|
||
|
fvScalarMatrix iEqn
|
||
|
(
|
||
|
fvm::ddt(rho, i)
|
||
|
+ fvm::div(phi, i)
|
||
|
- fvm::laplacian(turbulence->alphaEff(), i)
|
||
|
// u & gradP term (steady-state formulation)
|
||
|
+ fvm::SuSp((fvc::div(faceU, p, "div(U,p)") - p*fvc::div(faceU))/i, i)
|
||
|
==
|
||
|
// ddt(p) term removed: steady-state. HJ, 27/Apr/2010
|
||
|
// Viscous heating: note sign (devRhoReff has a minus in it)
|
||
|
- (turbulence->devRhoReff() && fvc::grad(Urel))
|
||
|
);
|
||
|
|
||
|
iEqn.relax();
|
||
|
|
||
|
eqnResidual = iEqn.solve().initialResidual();
|
||
|
maxResidual = max(eqnResidual, maxResidual);
|
||
|
|
||
|
// Calculate enthalpy out of rothalpy
|
||
|
volVectorField Urot("Urot", SRF->U());
|
||
|
|
||
|
h = i + 0.5*magSqr(Urot);
|
||
|
h.correctBoundaryConditions();
|
||
|
|
||
|
// Bound the enthalpy using TMin and TMax
|
||
|
volScalarField Cp = thermo.Cp();
|
||
|
|
||
|
h = Foam::min(h, TMax*Cp);
|
||
|
h = Foam::max(h, TMin*Cp);
|
||
|
h.correctBoundaryConditions();
|
||
|
|
||
|
// Re-initialise rothalpy based on limited enthalpy
|
||
|
i = h - 0.5*magSqr(Urot);
|
||
|
|
||
|
thermo.correct();
|
||
|
}
|