{
U = UEqn.H()/UEqn.A();
# include "limitU.H"
for (int nonOrth = 0; nonOrth <= nNonOrthCorr; nonOrth++)
// Calculate phi for boundary conditions
phi = rhof*
(
(fvc::interpolate(U) & mesh.Sf())
- fvc::meshPhi(rho, U)
);
surfaceScalarField phid2 = rhoReff/rhof*phi;
surfaceScalarField phid("phid", psisf/rhof*phi);
// Store pressure for under-relaxation
p.storePrevIter();
volScalarField divPhid
"divPhid",
fvc::div(phid)
fvScalarMatrix pEqn
fvm::ddt(psis, p)
+ fvm::div(phid, p)
// Convective flux relaxation terms
+ fvm::SuSp(-divPhid, p)
+ divPhid*p
+ fvc::div(phid2)
- fvm::laplacian(rho*rUA, p)
if
// oCorr == nOuterCorr - 1
corr == nCorr - 1
&& nonOrth == nNonOrthCorr
)
pEqn.solve
mesh.solutionDict().solver(p.name() + "Final")
}
else
pEqn.solve(mesh.solutionDict().solver(p.name()));
// Calculate the flux
if (nonOrth == nNonOrthCorr)
phi = phid2 + pEqn.flux();
// Bound the pressure
if (min(p) < pMin || max(p) > pMax)
p.max(pMin);
p.min(pMax);
p.correctBoundaryConditions();
// Relax the pressure
p.relax();
# include "compressibleContinuityErrs.H"
U -= fvc::grad(p)/UEqn.A();
U.correctBoundaryConditions();