This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/solvers/multiphase/interDyMFoam/interDyMFoam.C

144 lines
4 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
interDyMFoam
Description
Solver for 2 incompressible, isothermal immiscible fluids using a VOF
(volume of fluid) phase-fraction based interface capturing approach,
with optional mesh motion and mesh topology changes including adaptive
re-meshing.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "dynamicFvMesh.H"
#include "MULES.H"
#include "subCycle.H"
#include "interfaceProperties.H"
#include "twoPhaseMixture.H"
2010-09-22 18:13:13 +00:00
#include "turbulenceModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
# include "setRootCase.H"
# include "createTime.H"
# include "createDynamicFvMesh.H"
# include "readGravitationalAcceleration.H"
2013-10-22 14:52:36 +00:00
# include "readPIMPLEControls.H"
# include "initContinuityErrs.H"
# include "createFields.H"
# include "readTimeControls.H"
# include "correctPhi.H"
# include "CourantNo.H"
# include "setInitialDeltaT.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
# include "readControls.H"
# include "CourantNo.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, U);
# include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
bool meshChanged = mesh.update();
reduce(meshChanged, orOp<bool>());
# include "volContinuity.H"
volScalarField gh("gh", g & mesh.C());
surfaceScalarField ghf("ghf", g & mesh.Cf());
if (correctPhi && meshChanged)
{
# include "correctPhi.H"
}
// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, U);
if (checkMeshCourantNo)
{
# include "meshCourantNo.H"
}
2013-10-22 14:52:36 +00:00
// Pressure-velocity corrector
int oCorr = 0;
do
{
twoPhaseProperties.correct();
2013-10-22 14:52:36 +00:00
# include "alphaEqnSubCycle.H"
2013-10-22 14:52:36 +00:00
# include "UEqn.H"
2013-10-22 14:52:36 +00:00
// --- PISO loop
for (int corr = 0; corr < nCorr; corr++)
{
# include "pEqn.H"
}
2013-10-22 14:52:36 +00:00
p = pd + rho*gh;
2013-10-22 14:52:36 +00:00
if (pd.needReference())
{
p += dimensionedScalar
(
"p",
p.dimensions(),
pRefValue - getRefCellValue(p, pdRefCell)
);
}
2013-10-22 14:52:36 +00:00
turbulence->correct();
} while (++oCorr < nOuterCorr);
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
2010-09-22 18:13:13 +00:00
return 0;
}
// ************************************************************************* //