rho = thermo.rho();
volScalarField rUA = 1.0/UEqn.A();
U = rUA*UEqn.H();
if (transonic)
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pEqn
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rUA, p)
==
Sevap
pEqn.solve();
if (nonOrth == nNonOrthCorr)
phi == pEqn.flux();
}
else
phi =
fvc::interpolate(rho)*
+ fvc::div(phi)
phi += pEqn.flux();
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);