{
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf = fvc::interpolate(rUA);
U = rUA*UEqn.H();
// Immersed boundary update
U.correctBoundaryConditions();
# include "limitU.H"
surfaceScalarField phiU
(
"phiU",
faceIbMask*(fvc::interpolate(U) & mesh.Sf())
);
phi = phiU
+ faceIbMask*
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rUAf*mesh.magSf();
// Adjust immersed boundary fluxes
immersedBoundaryAdjustPhi(phi, U);
adjustPhi(phi, U, pd);
while (pimple.correctNonOrthogonal())
fvScalarMatrix pdEqn
fvm::laplacian(rUAf, pd, "laplacian(rAU,pd)") == fvc::div(phi)
pdEqn.setReference(pdRefCell, pdRefValue);
pdEqn.solve
mesh.solutionDict().solver(pd.select(pimple.finalInnerIter()))
if (pimple.finalNonOrthogonalIter())
phi -= pdEqn.flux();
}
// Explicitly relax pressure
pd.relax();
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);