{
rho = thermo.rho();
// Thermodynamic density needs to be updated by psi*d(p) after the
// pressure solution - done in 2 parts. Part 1:
thermo.rho() -= psi*p;
volScalarField rAU = 1.0/UEqn.A();
U = rAU*UEqn.H();
if (pZones.size() > 0)
// ddtPhiCorr not well defined for cases with porosity
phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());
}
else
phi =
fvc::interpolate(rho)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU, rho, U, phi)
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pEqn
(
fvc::ddt(rho) + psi*correction(fvm::ddt(p))
+ fvc::div(phi)
- fvm::laplacian(rho*rAU, p)
==
parcels.Srho()
+ massSource.SuTot()
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
pEqn.solve(mesh.solutionDict().solver("pFinal"));
pEqn.solve();
if (nonOrth == nNonOrthCorr)
phi += pEqn.flux();
// Second part of thermodynamic density update
thermo.rho() += psi*p;
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();