143 lines
3.8 KiB
C
143 lines
3.8 KiB
C
|
/*---------------------------------------------------------------------------*\
|
||
|
========= |
|
||
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
||
|
\\ / O peration |
|
||
|
\\ / A nd | Copyright held by original author
|
||
|
\\/ M anipulation |
|
||
|
-------------------------------------------------------------------------------
|
||
|
License
|
||
|
This file is part of OpenFOAM.
|
||
|
|
||
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License as published by the
|
||
|
Free Software Foundation; either version 2 of the License, or (at your
|
||
|
option) any later version.
|
||
|
|
||
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
||
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
|
||
|
Description
|
||
|
Generate analytical solution for a infinite plaste with a circular
|
||
|
hole.
|
||
|
Stress field sigma is generated.
|
||
|
Based on solution outlined in Timoshenko, Theory of Elasticity.
|
||
|
|
||
|
Author
|
||
|
plateHoleSolution function by Z. Tukovic
|
||
|
utility assembled by P. Cardiff
|
||
|
|
||
|
\*---------------------------------------------------------------------------*/
|
||
|
|
||
|
#include "fvCFD.H"
|
||
|
#include "volFields.H"
|
||
|
#include "fvc.H"
|
||
|
#include "fixedValueFvPatchFields.H"
|
||
|
#include "coordinateSystem.H"
|
||
|
|
||
|
symmTensor plateHoleSolution(const vector& C);
|
||
|
|
||
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
||
|
|
||
|
int main(int argc, char *argv[])
|
||
|
{
|
||
|
# include "setRootCase.H"
|
||
|
|
||
|
# include "createTime.H"
|
||
|
|
||
|
# include "createMesh.H"
|
||
|
|
||
|
runTime++;
|
||
|
|
||
|
Info << "Writing analytical solution for an infinite plate with a circular hole,\nwhere"
|
||
|
<< "\n\tradius = 0.5"
|
||
|
<< "\n\tdistant traction = (10,000 0 0 )"
|
||
|
<< nl << endl;
|
||
|
|
||
|
volSymmTensorField sigma
|
||
|
(
|
||
|
IOobject
|
||
|
(
|
||
|
"analyticalSigma",
|
||
|
runTime.timeName(),
|
||
|
mesh,
|
||
|
IOobject::NO_READ,
|
||
|
IOobject::AUTO_WRITE
|
||
|
),
|
||
|
mesh,
|
||
|
dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor::zero)
|
||
|
);
|
||
|
|
||
|
const volVectorField& C = mesh.C();
|
||
|
|
||
|
forAll(sigma.internalField(), celli)
|
||
|
{
|
||
|
vector curR = vector(C[celli].x(), C[celli].y(), 0);
|
||
|
|
||
|
sigma.internalField()[celli] = plateHoleSolution(curR);
|
||
|
}
|
||
|
|
||
|
forAll(sigma.boundaryField(), patchi)
|
||
|
{
|
||
|
forAll(sigma.boundaryField()[patchi], facei)
|
||
|
{
|
||
|
vector curR = vector(C.boundaryField()[patchi][facei].x(), C.boundaryField()[patchi][facei].y(), 0);
|
||
|
|
||
|
sigma.boundaryField()[patchi][facei] = plateHoleSolution(curR);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Info << "Writing analytical sigma tensor" << endl;
|
||
|
sigma.write();
|
||
|
|
||
|
Info << nl << "End" << endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// ************************************************************************* //
|
||
|
|
||
|
|
||
|
symmTensor plateHoleSolution(const vector& C)
|
||
|
{
|
||
|
tensor sigma = tensor::zero;
|
||
|
|
||
|
scalar T = 10000;
|
||
|
scalar a = 0.5;
|
||
|
|
||
|
scalar r = ::sqrt(sqr(C.x()) + sqr(C.y()));
|
||
|
scalar theta = Foam::atan2(C.y(), C.x());
|
||
|
|
||
|
coordinateSystem cs("polarCS", C, vector(0, 0, 1), C/mag(C));
|
||
|
|
||
|
sigma.xx() =
|
||
|
T*(1 - sqr(a)/sqr(r))/2
|
||
|
+ T*(1 + 3*pow(a,4)/pow(r,4) - 4*sqr(a)/sqr(r))*::cos(2*theta)/2;
|
||
|
|
||
|
sigma.xy() =
|
||
|
- T*(1 - 3*pow(a,4)/pow(r,4) + 2*sqr(a)/sqr(r))*::sin(2*theta)/2;
|
||
|
|
||
|
sigma.yx() = sigma.xy();
|
||
|
|
||
|
sigma.yy() =
|
||
|
T*(1 + sqr(a)/sqr(r))/2
|
||
|
- T*(1 + 3*pow(a,4)/pow(r,4))*::cos(2*theta)/2;
|
||
|
|
||
|
|
||
|
// Transformation to global coordinate system
|
||
|
sigma = ((cs.R()&sigma)&cs.R().T());
|
||
|
|
||
|
symmTensor S = symmTensor::zero;
|
||
|
|
||
|
S.xx() = sigma.xx();
|
||
|
S.xy() = sigma.xy();
|
||
|
S.yy() = sigma.yy();
|
||
|
|
||
|
return S;
|
||
|
}
|