rho = thermo.rho();
volScalarField rUA = 1.0/UEqn.A();
U = rUA*UEqn.H();
if (transonic)
{
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*((fvc::interpolate(U) & mesh.Sf()) - fvc::meshPhi(rho, U))
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pEqn
fvm::ddt(psi, p)
+ fvm::div(phid, p, "div(phid,p)")
- fvm::laplacian(rho*rUA, p)
pEqn.solve();
if (nonOrth == nNonOrthCorr)
phi == pEqn.flux();
}
else
phi = fvc::interpolate(rho)
*((fvc::interpolate(U) & mesh.Sf()) - fvc::meshPhi(rho, U));
+ fvc::div(phi)
phi += pEqn.flux();
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);