{
volScalarField rUA = 1.0/UEqn.A();
surfaceScalarField rUAf = fvc::interpolate(rUA);
U = rUA*UEqn.H();
surfaceScalarField phiU
(
"phiU",
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
);
adjustPhi(phiU, U, p);
phi = phiU +
fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
- ghf*fvc::snGrad(rho)
)*rUAf*mesh.magSf();
Pair<tmp<volScalarField> > vDotP = twoPhaseProperties->vDotP();
const volScalarField& vDotcP = vDotP[0]();
const volScalarField& vDotvP = vDotP[1]();
for(int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pdEqn
fvc::div(phi) - fvm::laplacian(rUAf, pd)
+ (vDotvP - vDotcP)*(rho*gh - pSat) + fvm::Sp(vDotvP - vDotcP, pd)
pdEqn.setReference(pdRefCell, pdRefValue);
if (corr == nCorr-1 && nonOrth == nNonOrthCorr)
pdEqn.solve(mesh.solver(pd.name() + "Final"));
}
else
pdEqn.solve(mesh.solver(pd.name()));
if (nonOrth == nNonOrthCorr)
phi += pdEqn.flux();
p = pd + rho*gh;
U += rUA*fvc::reconstruct((phi - phiU)/rUAf);
U.correctBoundaryConditions();