if(turbulence)
{
if (mesh.changing())
y.correct();
}
dimensionedScalar k0("k0", k.dimensions(), SMALL);
dimensionedScalar epsilon0("epsilon0", epsilon.dimensions(), SMALL);
volScalarField divU = fvc::div(phi/fvc::interpolate(rho));
tmp<volTensorField> tgradU = fvc::grad(U);
volScalarField G = 2*mut*(tgradU() && dev(symm(tgradU())));
tgradU.clear();
volScalarField Gcoef =
alphak*Cmu*k*(g & fvc::grad(rho))/(epsilon + epsilon0);
# include "wallFunctions.H"
// Dissipation equation
fvScalarMatrix epsEqn
(
fvm::ddt(rho, epsilon)
+ fvm::div(phi, epsilon)
- fvm::laplacian
alphaEps*mut + mul, epsilon,
"laplacian(DepsilonEff,epsilon)"
)
==
C1*G*epsilon/k
- fvm::SuSp(C1*(1.0 - C3)*Gcoef + (2.0/3.0*C1)*rho*divU, epsilon)
- fvm::Sp(C2*rho*epsilon/k, epsilon)
);
# include "wallDissipation.H"
epsEqn.relax();
epsEqn.solve();
bound(epsilon, epsilon0);
// Turbulent kinetic energy equation
solve
fvm::ddt(rho, k)
+ fvm::div(phi, k)
- fvm::laplacian(alphak*mut + mul, k, "laplacian(DkEff,k)")
G
- fvm::SuSp(Gcoef + 2.0/3.0*rho*divU, k)
- fvm::Sp(rho*epsilon/k, k)
bound(k, k0);
//- Re-calculate viscosity
mut = rho*Cmu*sqr(k)/(epsilon + epsilon0);
# include "wallViscosity.H"
mu = mut + mul;