This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/tutorials/equationReader/equationReaderDemo/pitzDaily/constant/equationDict

207 lines
7.6 KiB
Text
Raw Normal View History

2013-08-29 20:03:52 +00:00
/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
2013-12-11 16:09:41 +00:00
| \\ / F ield | foam-extend: Open Source CFD |
2016-06-20 15:00:40 +00:00
| \\ / O peration | Version: 4.0 |
2015-05-17 13:55:59 +00:00
| \\ / A nd | Web: http://www.foam-extend.org |
2013-08-29 20:03:52 +00:00
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object transportProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// equationReaderDemo makes these variables available to your equations:
//
// t time
// C.x x co-ordinate
// C.y y co-ordinate
// C.z z co-ordinate
// V cell volume
// p pressure
// U.x velocity x
// U.y velocity y
// U.z velocity z
// R_.xx Reynolds stress tensor xx
// R_.xy Reynolds stress tensor xy
// R_.xz Reynolds stress tensor xz
// R_.yy Reynolds stress tensor yy
// R_.yz Reynolds stress tensor yz
// R_.zz Reynolds stress tensor zz
// scalar sources:
// sA, sB, sC
// DimensionedScalarSources:
// dsA, dsB, dsC
// scalarField sources (cannot be used for GeometricField output equations)
// sfA, sfB, sfC
// volScalarField sources
// vsfA, vsfB, vsfC
// vector sources
// vA.x, vA.y, vA.z
// vB.x, vB.y, vB.z
// vC.x, vC.y, vC.z
// DimensionedVectorSources:
// dvA.x, dvA.y, dvA.z
// dvB.x, dvB.y, dvB.z
// dvC.x, dvC.y, dvC.z
// vectorField sources (cannot be used for GeometricField output equations)
// vfA.x, vfA.y, vfA.z
// vfB.x, vfB.y, vfB.z
// vfC.x, vfC.y, vfC.z
// volVectorField sources
// vvfA.x, vvfA.y, vvfA.z
// vvfB.x, vvfB.y, vvfB.z
// vvfC.x, vvfC.y, vvfC.z
// tensor sources
// tA.xx, tA.xy, tA.xz, tA.yx, tA.yy, tA.yz, tA.zx, tA.zy, tA.zz
// tB.xx, tB.xy, tB.xz, tB.yx, tB.yy, tB.yz, tB.zx, tB.zy, tB.zz
// tC.xx, tC.xy, tC.xz, tC.yx, tC.yy, tC.yz, tC.zx, tC.zy, tC.zz
// DimensionedTensorSources:
// dtA.xx, dtA.xy, dtA.xz, dtA.yx, dtA.yy, dtA.yz, dtA.zx, dtA.zy, dtA.zz
// dtB.xx, dtB.xy, dtB.xz, dtB.yx, dtB.yy, dtB.yz, dtB.zx, dtB.zy, dtB.zz
// dtC.xx, dtC.xy, dtC.xz, dtC.yx, dtC.yy, dtC.yz, dtC.zx, dtC.zy, dtC.zz
// tensorField sources (cannot be used for GeometricField output equations)
// tfA.xx, tfA.xy, tfA.xz, tfA.yx, tfA.yy, tfA.yz, tfA.zx, tfA.zy, tfA.zz
// tfB.xx, tfB.xy, tfB.xz, tfB.yx, tfB.yy, tfB.yz, tfB.zx, tfB.zy, tfB.zz
// tfC.xx, tfC.xy, tfC.xz, tfC.yx, tfC.yy, tfC.yz, tfC.zx, tfC.zy, tfC.zz
// volVectorField sources
// vtfA.xx, vtfA.xy, vtfA.xz, vtfA.yx, vtfA.yy, vtfA.yz, vtfA.zx, vtfA.zy,
// vtfA.zz
// vtfB.xx, vtfB.xy, vtfB.xz, vtfB.yx, vtfB.yy, vtfB.yz, vtfB.zx, vtfB.zy,
// vtfB.zz
// vtfC.xx, vtfC.xy, vtfC.xz, vtfC.yx, vtfC.yy, vtfC.yz, vtfC.zx, vtfC.zy,
// vtfC.zz
// Also, this dictionary is, itself, a "source", so you can define your own
// variables, including:
// scalars
// dimensionedScalars
// other equations
// * * * * * * * * * * * * * * Scalar Equations * * * * * * * * * * * * * * //
// scalar
// You can use any variables on single scalars. If a field is used, equation
// reader will take the value at cell index 0 unless you tell it otherwise.
// You can mix types, provided you give a valid component. This equation is
// for a scalar, so it ignores dimensions.
sOut "sA + dsB + vC.x + tA.yz";
// dimensionedScalar
// This equation will be evaluated twice: once for the scalar value, and once
// for the dimensionSet. If the dimensions don't match, it will fail. You
// can subscribe a dimensionSet. This will disable dimension-checking, and
// force the outcome to the dimensions you give it - this is shown for dsfOut.
dsOut "sqrt(sqr(vB.x) + sqr(vB.y) + sqr(vB.z))";
// dimenionedScalarField
// You can use any variables on fields. If single variables appear, they are
// assumed uniform throughout the field. If GeometricFields appear, the
// boundary field is ignored. If another field is given, its size must match.
// Index checking is slow, so it is only available in FULLDEBUG mode. In this
// equation, we define a dimensionSet. This forces the outcome to the
// prescribed dimension.
dsfOut [0 0 0 0 0 0 0] "V / C.x * t";
// volScalarField
// This is for a GeometricField. GeometricField equations are very picky
// about their source data. They can either use single-element sources, such
// as scalars, tensors, etc., or other GeometricFields. The GeometricFields
// must have the same sizes.
volSfOut "sOut * vsfA + max(vtfA.yz, vtfA.zy)";
// * * * * * * * * * * * * * * Vector Equations * * * * * * * * * * * * * * //
// vector
// You can't define vector or tensor equations. equationReader only works
// with scalars. To get it to work, you have to evaluate them one component
// at a time. To use a constant built-in to OpenFOAM, append _ to the name.
//vOut.x "U.x / stabilise(C.x, VSMALL_) * t";
//vOut.y "U.y / stabilise(C.y, VSMALL_) * t";
//vOut.z "U.z / stabilise(C.z, VSMALL_) * t";
vOut.x [0 0 0 0 0 0 0] "R_.xx"; //"R_.xx * C.x / dsC";
vOut.y [0 0 0 0 0 0 0] "C.x"; //"R_.xx * C.x / dsC";
vOut.z [0 0 0 0 0 0 0] "R_.xx * C.x / dsC"; //"R_.xx * C.x / dsC";
// dimensionedVector
// To simplify an equation, you can create your own additional equations.
// equationReader will find and evaluate them on-the-fly when needed. This
// only works in dictionaries that are data sources to the equationReader.
dvOut.x "U.x / velocityMagnitude";
dvOut.y "U.y / velocityMagnitude";
dvOut.z "U.z / velocityMagnitude";
velocityMagnitude "sqrt(sqr(U.x) + sqr(U.y) + sqr(U.z))";
// dimensionedVectorField
// Any amount of white space is okay. Use a backslash to break a line. The
// equation can use +, -, *, /, and any functions I could find available to
// scalar or dimensioned scalar. Use the pow(a,b) instead of a^b. Use
// parentheses to any depth you wish.
dvfOut.x [0 0 0 0 0 0 0] "R_.xx * log ( C.x / dsC + 4 ) + 2 * pi_ / 360 \
- max( \
C.x, C.y) * dvOut.x";
dvfOut.y [0 0 0 0 0 0 0] " max \
(\
C.x, \
max \
( \
C.y, \
C.z \
) \
)";
dvfOut.z "1 + 2 * pow(3, pow(2, pow((2*3*4/(7*(8+4))), 3)))";
// You get the idea.
// volVectorField
volVfOut.x "1";
volVfOut.y "1";
volVfOut.z "1";
// * * * * * * * * * * * * * * Tensor Equations * * * * * * * * * * * * * * //
// tensor
tOut.xx "1";
tOut.xy "1";
tOut.xz "1";
tOut.yx "1";
tOut.yy "1";
tOut.yz "1";
tOut.zx "1";
tOut.zy "1";
tOut.zz "1";
// dimensionedTensor
dtOut.xx "1";
dtOut.xy "1";
dtOut.xz "1";
dtOut.yx "1";
dtOut.yy "1";
dtOut.yz "1";
dtOut.zx "1";
dtOut.zy "1";
dtOut.zz "1";
// dimensionedTensorField
dtfOut.xx "1";
dtfOut.xy "1";
dtfOut.xz "1";
dtfOut.yx "1";
dtfOut.yy "1";
dtfOut.yz "1";
dtfOut.zx "1";
dtfOut.zy "1";
dtfOut.zz "1";
// volTensorField
volTfOut.xx "1";
volTfOut.xy "1";
volTfOut.xz "1";
volTfOut.yx "1";
volTfOut.yy "1";
volTfOut.yz "1";
volTfOut.zx "1";
volTfOut.zy "1";
volTfOut.zz "1";
// ************************************************************************* //