This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/postProcessing/velocityField/streamFunction/streamFunction.C

470 lines
18 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Application
streamFunction
Description
2010-08-26 14:22:03 +00:00
Calculates and writes the stream function of velocity field U at each time
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "pointFields.H"
#include "emptyPolyPatch.H"
#include "symmetryPolyPatch.H"
#include "wedgePolyPatch.H"
#include "OSspecific.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Main program:
int main(int argc, char *argv[])
{
2010-08-26 14:22:03 +00:00
timeSelector::addOptions();
# include "setRootCase.H"
# include "createTime.H"
2010-08-26 14:22:03 +00:00
instantList timeDirs = timeSelector::select0(runTime, args);
# include "createMeshNoClear.H"
pointMesh pMesh(mesh);
2010-08-26 14:22:03 +00:00
forAll(timeDirs, timeI)
{
2010-08-26 14:22:03 +00:00
runTime.setTime(timeDirs[timeI], timeI);
Info<< nl << "Time: " << runTime.timeName() << endl;
IOobject phiHeader
(
"phi",
runTime.timeName(),
mesh,
IOobject::NO_READ
);
if (phiHeader.headerOk())
{
mesh.readUpdate();
Info<< nl << "Reading field phi" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
),
mesh
);
pointScalarField streamFunction
(
IOobject
(
"streamFunction",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
pMesh,
dimensionedScalar("zero", phi.dimensions(), 0.0)
);
labelList visitedPoint(mesh.nPoints());
forAll (visitedPoint, pointI)
{
visitedPoint[pointI] = 0;
}
label nVisited = 0;
label nVisitedOld = 0;
const unallocFaceList& faces = mesh.faces();
const pointField& points = mesh.points();
label nInternalFaces = mesh.nInternalFaces();
vectorField unitAreas = mesh.faceAreas();
unitAreas /= mag(unitAreas);
const polyPatchList& patches = mesh.boundaryMesh();
bool finished = true;
// Find the boundary face with zero flux. set the stream function
// to zero on that face
bool found = false;
do
{
found = false;
forAll (patches, patchI)
{
const primitivePatch& bouFaces = patches[patchI];
if (!isType<emptyPolyPatch>(patches[patchI]))
{
forAll (bouFaces, faceI)
{
if
(
magSqr(phi.boundaryField()[patchI][faceI])
< SMALL
)
{
const labelList& zeroPoints = bouFaces[faceI];
// Zero flux face found
found = true;
forAll (zeroPoints, pointI)
{
if (visitedPoint[zeroPoints[pointI]] == 1)
{
found = false;
break;
}
}
if (found)
{
Info<< "Zero face: patch: " << patchI
<< " face: " << faceI << endl;
forAll (zeroPoints, pointI)
{
streamFunction[zeroPoints[pointI]] = 0;
visitedPoint[zeroPoints[pointI]] = 1;
nVisited++;
}
break;
}
}
}
}
if (found) break;
}
if (!found)
{
Info<< "zero flux boundary face not found. "
<< "Using cell as a reference."
<< endl;
const cellList& c = mesh.cells();
forAll (c, cI)
{
labelList zeroPoints = c[cI].labels(mesh.faces());
bool found = true;
forAll (zeroPoints, pointI)
{
if (visitedPoint[zeroPoints[pointI]] == 1)
{
found = false;
break;
}
}
if (found)
{
forAll (zeroPoints, pointI)
{
streamFunction[zeroPoints[pointI]] = 0.0;
visitedPoint[zeroPoints[pointI]] = 1;
nVisited++;
}
break;
}
else
{
FatalErrorIn(args.executable())
<< "Cannot find initialisation face or a cell."
<< abort(FatalError);
}
}
}
// Loop through all faces. If one of the points on
// the face has the streamfunction value different
// from -1, all points with -1 ont that face have the
// streamfunction value equal to the face flux in
// that point plus the value in the visited point
do
{
finished = true;
for
(
label faceI = nInternalFaces;
faceI<faces.size();
faceI++
)
{
const labelList& curBPoints = faces[faceI];
bool bPointFound = false;
scalar currentBStream = 0.0;
vector currentBStreamPoint(0, 0, 0);
forAll (curBPoints, pointI)
{
// Check if the point has been visited
if (visitedPoint[curBPoints[pointI]] == 1)
{
// The point has been visited
currentBStream =
streamFunction[curBPoints[pointI]];
currentBStreamPoint =
points[curBPoints[pointI]];
bPointFound = true;
break;
}
}
if (bPointFound)
{
// Sort out other points on the face
forAll (curBPoints, pointI)
{
// Check if the point has been visited
if (visitedPoint[curBPoints[pointI]] == 0)
{
label patchNo =
mesh.boundaryMesh().whichPatch(faceI);
if
(
!isType<emptyPolyPatch>
(patches[patchNo])
&& !isType<symmetryPolyPatch>
(patches[patchNo])
&& !isType<wedgePolyPatch>
(patches[patchNo])
)
{
label faceNo =
mesh.boundaryMesh()[patchNo]
.whichFace(faceI);
vector edgeHat =
points[curBPoints[pointI]]
- currentBStreamPoint;
edgeHat.replace(vector::Z, 0);
edgeHat /= mag(edgeHat);
vector nHat = unitAreas[faceI];
if (edgeHat.y() > VSMALL)
{
visitedPoint[curBPoints[pointI]] =
1;
nVisited++;
streamFunction[curBPoints[pointI]]
=
currentBStream
+ phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.x());
}
else if (edgeHat.y() < -VSMALL)
{
visitedPoint[curBPoints[pointI]] =
1;
nVisited++;
streamFunction[curBPoints[pointI]]
=
currentBStream
- phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.x());
}
else
{
if (edgeHat.x() > VSMALL)
{
visitedPoint
[curBPoints[pointI]] = 1;
nVisited++;
streamFunction
[curBPoints[pointI]] =
currentBStream
+ phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.y());
}
else if (edgeHat.x() < -VSMALL)
{
visitedPoint
[curBPoints[pointI]] = 1;
nVisited++;
streamFunction
[curBPoints[pointI]] =
currentBStream
- phi.boundaryField()
[patchNo][faceNo]
*sign(nHat.y());
}
}
}
}
}
}
else
{
finished = false;
}
}
for (label faceI=0; faceI<nInternalFaces; faceI++)
{
// Get the list of point labels for the face
const labelList& curPoints = faces[faceI];
bool pointFound = false;
scalar currentStream = 0.0;
point currentStreamPoint(0, 0, 0);
forAll (curPoints, pointI)
{
// Check if the point has been visited
if (visitedPoint[curPoints[pointI]] == 1)
{
// The point has been visited
currentStream =
streamFunction[curPoints[pointI]];
currentStreamPoint =
points[curPoints[pointI]];
pointFound = true;
break;
}
}
if (pointFound)
{
// Sort out other points on the face
forAll (curPoints, pointI)
{
// Check if the point has been visited
if (visitedPoint[curPoints[pointI]] == 0)
{
vector edgeHat =
points[curPoints[pointI]]
- currentStreamPoint;
edgeHat.replace(vector::Z, 0);
edgeHat /= mag(edgeHat);
vector nHat = unitAreas[faceI];
if (edgeHat.y() > VSMALL)
{
visitedPoint[curPoints[pointI]] = 1;
nVisited++;
streamFunction[curPoints[pointI]] =
currentStream
+ phi[faceI]*sign(nHat.x());
}
else if (edgeHat.y() < -VSMALL)
{
visitedPoint[curPoints[pointI]] = 1;
nVisited++;
streamFunction[curPoints[pointI]] =
currentStream
- phi[faceI]*sign(nHat.x());
}
}
}
}
else
{
finished = false;
}
}
Info<< ".";
// Info<< "One pass, n visited = " << nVisited << endl;
if (nVisited == nVisitedOld)
{
// Find new seed. This must be a
// multiply connected domain
Info<< nl << "Exhausted a seed. Looking for new seed "
<< "(this is correct for multiply connected "
<< "domains).";
break;
}
else
{
nVisitedOld = nVisited;
}
} while (!finished);
Info << endl;
} while (!finished);
streamFunction.boundaryField() = 0.0;
streamFunction.write();
}
else
{
WarningIn(args.executable())
<< "Flux field does not exist."
<< " Stream function not calculated" << endl;
}
}
2010-08-26 14:22:03 +00:00
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //