This repository has been archived on 2023-11-20. You can view files and clone it, but cannot push or open issues or pull requests.
foam-extend4.1-coherent-io/applications/utilities/parallelProcessing/decomposePar/decomposeMesh.C

920 lines
33 KiB
C
Raw Normal View History

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright held by original author
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
InClass
domainDecomposition
Description
Private member of domainDecomposition.
Decomposes the mesh into bits
\*---------------------------------------------------------------------------*/
#include "domainDecomposition.H"
#include "IOstreams.H"
#include "SLPtrList.H"
#include "boolList.H"
#include "cellList.H"
#include "primitiveMesh.H"
2010-08-26 14:22:03 +00:00
#include "cyclicPolyPatch.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void domainDecomposition::decomposeMesh(const bool filterEmptyPatches)
{
// Decide which cell goes to which processor
distributeCells();
// Distribute the cells according to the given processor label
// calculate the addressing information for the original mesh
Info<< "\nCalculating original mesh data" << endl;
// set references to the original mesh
const polyBoundaryMesh& patches = boundaryMesh();
// Access all faces to grab the zones
const faceList& fcs = allFaces();
const labelList& owner = faceOwner();
const labelList& neighbour = faceNeighbour();
// loop through the list of processor labels for the cell and add the
// cell shape to the list of cells for the appropriate processor
Info<< "\nDistributing cells to processors" << endl;
// Memory management
{
List<SLList<label> > procCellList(nProcs_);
forAll (cellToProc_, celli)
{
if (cellToProc_[celli] >= nProcs_)
{
FatalErrorIn("domainDecomposition::decomposeMesh()")
<< "Impossible processor label " << cellToProc_[celli]
<< "for cell " << celli
<< abort(FatalError);
}
else
{
procCellList[cellToProc_[celli]].append(celli);
}
}
// Convert linked lists into normal lists
forAll (procCellList, procI)
{
procCellAddressing_[procI] = procCellList[procI];
}
}
Info << "\nDistributing faces to processors" << endl;
// Loop through all internal faces and decide which processor they belong to
// First visit all internal faces. If cells at both sides belong to the
// same processor, the face is an internal face. If they are different,
// it belongs to both processors.
// Memory management
{
List<SLList<label> > procFaceList(nProcs_);
forAll (neighbour, facei)
{
if (cellToProc_[owner[facei]] == cellToProc_[neighbour[facei]])
{
// Face internal to processor
procFaceList[cellToProc_[owner[facei]]].append(facei);
}
}
// Record number of internal faces on each processor
forAll (procFaceList, procI)
{
nInternalProcFaces_[procI] = procFaceList[procI].size();
}
// Detect inter-processor boundaries
// Neighbour processor for each subdomain
List<SLList<label> > interProcBoundaries(nProcs_);
// Face labels belonging to each inter-processor boundary
List<SLList<SLList<label> > > interProcBFaces(nProcs_);
List<SLList<label> > procPatchIndex(nProcs_);
forAll (neighbour, facei)
{
if (cellToProc_[owner[facei]] != cellToProc_[neighbour[facei]])
{
// inter - processor patch face found. Go through the list of
// inside boundaries for the owner processor and try to find
// this inter-processor patch.
label ownerProc = cellToProc_[owner[facei]];
label neighbourProc = cellToProc_[neighbour[facei]];
SLList<label>::iterator curInterProcBdrsOwnIter =
interProcBoundaries[ownerProc].begin();
SLList<SLList<label> >::iterator curInterProcBFacesOwnIter =
interProcBFaces[ownerProc].begin();
bool interProcBouFound = false;
// WARNING: Synchronous SLList iterators
for
(
;
curInterProcBdrsOwnIter
!= interProcBoundaries[ownerProc].end()
&& curInterProcBFacesOwnIter
!= interProcBFaces[ownerProc].end();
++curInterProcBdrsOwnIter, ++curInterProcBFacesOwnIter
)
{
if (curInterProcBdrsOwnIter() == neighbourProc)
{
// the inter - processor boundary exists. Add the face
interProcBouFound = true;
curInterProcBFacesOwnIter().append(facei);
SLList<label>::iterator curInterProcBdrsNeiIter =
interProcBoundaries[neighbourProc].begin();
SLList<SLList<label> >::iterator
curInterProcBFacesNeiIter =
interProcBFaces[neighbourProc].begin();
bool neighbourFound = false;
// WARNING: Synchronous SLList iterators
for
(
;
curInterProcBdrsNeiIter !=
interProcBoundaries[neighbourProc].end()
&& curInterProcBFacesNeiIter !=
interProcBFaces[neighbourProc].end();
++curInterProcBdrsNeiIter,
++curInterProcBFacesNeiIter
)
{
if (curInterProcBdrsNeiIter() == ownerProc)
{
// boundary found. Add the face
neighbourFound = true;
curInterProcBFacesNeiIter().append(facei);
}
if (neighbourFound) break;
}
if (interProcBouFound && !neighbourFound)
{
FatalErrorIn("domainDecomposition::decomposeMesh()")
<< "Inconsistency in inter - "
<< "processor boundary lists for processors "
<< ownerProc << " and " << neighbourProc
<< abort(FatalError);
}
}
if (interProcBouFound) break;
}
if (!interProcBouFound)
{
// inter - processor boundaries do not exist and need to
// be created
// set the new addressing information
// owner
interProcBoundaries[ownerProc].append(neighbourProc);
interProcBFaces[ownerProc].append(SLList<label>(facei));
// neighbour
interProcBoundaries[neighbourProc].append(ownerProc);
interProcBFaces[neighbourProc].append(SLList<label>(facei));
}
}
}
// Loop through patches. For cyclic boundaries detect inter-processor
// faces; for all other, add faces to the face list and remember start
// and size of all patches.
// for all processors, set the size of start index and patch size
// lists to the number of patches in the mesh
forAll (procPatchSize_, procI)
{
procPatchSize_[procI].setSize(patches.size());
procPatchStartIndex_[procI].setSize(patches.size());
}
forAll (patches, patchi)
{
// Reset size and start index for all processors
forAll (procPatchSize_, procI)
{
procPatchSize_[procI][patchi] = 0;
procPatchStartIndex_[procI][patchi] =
procFaceList[procI].size();
}
const label patchStart = patches[patchi].start();
2010-08-26 14:22:03 +00:00
if (!isA<cyclicPolyPatch>(patches[patchi]))
{
// Normal patch. Add faces to processor where the cell
// next to the face lives
const unallocLabelList& patchFaceCells =
patches[patchi].faceCells();
forAll (patchFaceCells, facei)
{
const label curProc = cellToProc_[patchFaceCells[facei]];
// add the face
procFaceList[curProc].append(patchStart + facei);
// increment the number of faces for this patch
procPatchSize_[curProc][patchi]++;
}
}
else
{
// Cyclic patch special treatment
const polyPatch& cPatch = patches[patchi];
const label cycOffset = cPatch.size()/2;
// Set reference to faceCells for both patches
const labelList::subList firstFaceCells
(
cPatch.faceCells(),
cycOffset
);
const labelList::subList secondFaceCells
(
cPatch.faceCells(),
cycOffset,
cycOffset
);
forAll (firstFaceCells, facei)
{
if
(
cellToProc_[firstFaceCells[facei]]
!= cellToProc_[secondFaceCells[facei]]
)
{
// This face becomes an inter-processor boundary face
// inter - processor patch face found. Go through
// the list of inside boundaries for the owner
// processor and try to find this inter-processor
// patch.
cyclicParallel_ = true;
label ownerProc = cellToProc_[firstFaceCells[facei]];
label neighbourProc =
cellToProc_[secondFaceCells[facei]];
SLList<label>::iterator curInterProcBdrsOwnIter =
interProcBoundaries[ownerProc].begin();
SLList<SLList<label> >::iterator
curInterProcBFacesOwnIter =
interProcBFaces[ownerProc].begin();
bool interProcBouFound = false;
// WARNING: Synchronous SLList iterators
for
(
;
curInterProcBdrsOwnIter !=
interProcBoundaries[ownerProc].end()
&& curInterProcBFacesOwnIter !=
interProcBFaces[ownerProc].end();
++curInterProcBdrsOwnIter,
++curInterProcBFacesOwnIter
)
{
if (curInterProcBdrsOwnIter() == neighbourProc)
{
// the inter - processor boundary exists.
// Add the face
interProcBouFound = true;
curInterProcBFacesOwnIter().append
(patchStart + facei);
SLList<label>::iterator curInterProcBdrsNeiIter
= interProcBoundaries[neighbourProc].begin();
SLList<SLList<label> >::iterator
curInterProcBFacesNeiIter =
interProcBFaces[neighbourProc].begin();
bool neighbourFound = false;
// WARNING: Synchronous SLList iterators
for
(
;
curInterProcBdrsNeiIter
!= interProcBoundaries[neighbourProc].end()
&& curInterProcBFacesNeiIter
!= interProcBFaces[neighbourProc].end();
++curInterProcBdrsNeiIter,
++curInterProcBFacesNeiIter
)
{
if (curInterProcBdrsNeiIter() == ownerProc)
{
// boundary found. Add the face
neighbourFound = true;
curInterProcBFacesNeiIter()
.append
(
patchStart
+ cycOffset
+ facei
);
}
if (neighbourFound) break;
}
if (interProcBouFound && !neighbourFound)
{
FatalErrorIn
(
"domainDecomposition::decomposeMesh()"
) << "Inconsistency in inter-processor "
<< "boundary lists for processors "
<< ownerProc << " and " << neighbourProc
<< " in cyclic boundary matching"
<< abort(FatalError);
}
}
if (interProcBouFound) break;
}
if (!interProcBouFound)
{
// inter - processor boundaries do not exist
// and need to be created
// set the new addressing information
// owner
interProcBoundaries[ownerProc]
.append(neighbourProc);
interProcBFaces[ownerProc]
.append(SLList<label>(patchStart + facei));
// neighbour
interProcBoundaries[neighbourProc]
.append(ownerProc);
interProcBFaces[neighbourProc]
.append
(
SLList<label>
(
patchStart
+ cycOffset
+ facei
)
);
}
}
else
{
// This cyclic face remains on the processor
label ownerProc = cellToProc_[firstFaceCells[facei]];
// add the face
procFaceList[ownerProc].append(patchStart + facei);
// increment the number of faces for this patch
procPatchSize_[ownerProc][patchi]++;
// Note: I cannot add the other side of the cyclic
// boundary here because this would violate the order.
// They will be added in a separate loop below
// HJ, 15/Jan/2001
}
}
// Ordering in cyclic boundaries is important.
// Add the other half of cyclic faces for cyclic boundaries
// that remain on the processor
forAll (secondFaceCells, facei)
{
if
(
cellToProc_[firstFaceCells[facei]]
== cellToProc_[secondFaceCells[facei]]
)
{
// This cyclic face remains on the processor
label ownerProc = cellToProc_[firstFaceCells[facei]];
// add the second face
procFaceList[ownerProc].append
(patchStart + cycOffset + facei);
// increment the number of faces for this patch
procPatchSize_[ownerProc][patchi]++;
}
}
}
}
// Face zone treatment. HJ, 27/Mar/2009
// Face zones identified as global will be present on all CPUs
List<SLList<label> > procZoneFaceList(nProcs_);
if (decompositionDict_.found("globalFaceZones"))
{
wordList fzNames(decompositionDict_.lookup("globalFaceZones"));
const faceZoneMesh& fz = faceZones();
forAll (fzNames, nameI)
{
const label zoneID = fz.findZoneID(fzNames[nameI]);
if (zoneID == -1)
{
FatalErrorIn("domainDecomposition::decomposeMesh()")
<< "Unknown global face zone " << fzNames[nameI]
<< nl << "Valid face zones are" << fz.names()
<< exit(FatalError);
}
Info<< "Preserving global face zone " << fzNames[nameI] << endl;
const faceZone& curFz = fz[zoneID];
// Go through all the faces in the zone. If the owner of the
// face equals to current processor, it has already been added;
// otherwise, add the face to all processor face lists
forAll (curFz, faceI)
{
const label curFaceID = curFz[faceI];
if (curFaceID < owner.size())
{
// This is an active mesh face, and it already belongs
// to one CPU. Find out which and add it to the others
const label curProc = cellToProc_[owner[curFaceID]];
forAll (procZoneFaceList, procI)
{
if (procI != curProc)
{
procZoneFaceList[procI].append(curFaceID);
}
}
}
else
{
// This is a stand-alone face, add it to all processors
forAll (procFaceList, procI)
{
procZoneFaceList[procI].append(curFaceID);
}
}
}
}
}
// Convert linked lists into normal lists
// Add inter-processor boundaries and remember start indices
forAll (procFaceList, procI)
{
// Get internal and regular boundary processor faces
const SLList<label>& curProcFaces = procFaceList[procI];
// Get reference to processor face addressing
labelList& curProcFaceAddressing = procFaceAddressing_[procI];
labelList& curProcNeighbourProcessors =
procNeighbourProcessors_[procI];
labelList& curProcProcessorPatchSize =
procProcessorPatchSize_[procI];
labelList& curProcProcessorPatchStartIndex =
procProcessorPatchStartIndex_[procI];
// calculate the size
label nFacesOnProcessor = curProcFaces.size();
for
(
SLList<SLList<label> >::const_iterator curInterProcBFacesIter =
interProcBFaces[procI].begin();
curInterProcBFacesIter != interProcBFaces[procI].end();
++curInterProcBFacesIter
)
{
nFacesOnProcessor += curInterProcBFacesIter().size();
}
// Add stand-alone global zone faces
nFacesOnProcessor += procZoneFaceList[procI].size();
curProcFaceAddressing.setSize(nFacesOnProcessor);
// Fill in the list. Calculate turning index.
// Turning index will be -1 only for some faces on processor
// boundaries, i.e. the ones where the current processor ID
// is in the cell which is a face neighbour.
// Turning index is stored as the sign of the face addressing list
label nFaces = 0;
// Add internal and boundary faces
// Remember to increment the index by one such that the
// turning index works properly. HJ, 5/Dec/2001
for
(
SLList<label>::const_iterator curProcFacesIter =
curProcFaces.begin();
curProcFacesIter != curProcFaces.end();
++curProcFacesIter
)
{
curProcFaceAddressing[nFaces] = curProcFacesIter() + 1;
nFaces++;
}
// Add inter-processor boundary faces. At the beginning of each
// patch, grab the patch start index and size
curProcNeighbourProcessors.setSize
(
interProcBoundaries[procI].size()
);
curProcProcessorPatchSize.setSize
(
interProcBoundaries[procI].size()
);
curProcProcessorPatchStartIndex.setSize
(
interProcBoundaries[procI].size()
);
label nProcPatches = 0;
SLList<label>::iterator curInterProcBdrsIter =
interProcBoundaries[procI].begin();
SLList<SLList<label> >::iterator curInterProcBFacesIter =
interProcBFaces[procI].begin();
for
(
;
curInterProcBdrsIter != interProcBoundaries[procI].end()
&& curInterProcBFacesIter != interProcBFaces[procI].end();
++curInterProcBdrsIter, ++curInterProcBFacesIter
)
{
curProcNeighbourProcessors[nProcPatches] =
curInterProcBdrsIter();
// Get start index for processor patch
curProcProcessorPatchStartIndex[nProcPatches] = nFaces;
label& curSize =
curProcProcessorPatchSize[nProcPatches];
curSize = 0;
// add faces for this processor boundary
for
(
SLList<label>::iterator curFacesIter =
curInterProcBFacesIter().begin();
curFacesIter != curInterProcBFacesIter().end();
++curFacesIter
)
{
// add the face
// Remember to increment the index by one such that the
// turning index works properly. HJ, 5/Dec/2001
if (cellToProc_[owner[curFacesIter()]] == procI)
{
curProcFaceAddressing[nFaces] = curFacesIter() + 1;
}
else
{
// turning face
curProcFaceAddressing[nFaces] = -(curFacesIter() + 1);
}
// increment the size
curSize++;
nFaces++;
}
nProcPatches++;
}
// Record number of live faces
nLiveProcFaces_[procI] = nFaces;
// Add stand-alone face zone faces
const SLList<label>& curProcZoneFaces = procZoneFaceList[procI];
for
(
SLList<label>::const_iterator curProcZoneFacesIter =
curProcZoneFaces.begin();
curProcZoneFacesIter != curProcZoneFaces.end();
++curProcZoneFacesIter
)
{
curProcFaceAddressing[nFaces] = curProcZoneFacesIter() + 1;
nFaces++;
}
} // End for all processors
} // End of memory management
Info << "\nCalculating processor boundary addressing" << endl;
// For every patch of processor boundary, find the index of the original
// patch. Mis-alignment is caused by the fact that patches with zero size
// are omitted. For processor patches, set index to -1.
// At the same time, filter the procPatchSize_ and procPatchStartIndex_
// lists to exclude zero-size patches
forAll (procPatchSize_, procI)
{
// Make a local copy of old lists
const labelList oldPatchSizes = procPatchSize_[procI];
const labelList oldPatchStarts = procPatchStartIndex_[procI];
labelList& curPatchSizes = procPatchSize_[procI];
labelList& curPatchStarts = procPatchStartIndex_[procI];
const labelList& curProcessorPatchSizes =
procProcessorPatchSize_[procI];
labelList& curBoundaryAddressing = procBoundaryAddressing_[procI];
curBoundaryAddressing.setSize
(
oldPatchSizes.size()
+ curProcessorPatchSizes.size()
);
label nPatches = 0;
forAll (oldPatchSizes, patchi)
{
if (!filterEmptyPatches || oldPatchSizes[patchi] > 0)
{
curBoundaryAddressing[nPatches] = patchi;
curPatchSizes[nPatches] = oldPatchSizes[patchi];
curPatchStarts[nPatches] = oldPatchStarts[patchi];
nPatches++;
}
}
// reset to the size of live patches
curPatchSizes.setSize(nPatches);
curPatchStarts.setSize(nPatches);
forAll (curProcessorPatchSizes, procPatchI)
{
curBoundaryAddressing[nPatches] = -1;
nPatches++;
}
curBoundaryAddressing.setSize(nPatches);
}
Info << "\nDistributing points to processors" << endl;
// For every processor, loop through the list of faces for the processor.
// For every face, loop through the list of points and mark the point as
// used for the processor. Collect the list of used points for the
// processor.
// Record number of live points on each processor
labelList nLivePoints(nProcs_, 0);
forAll (procPointAddressing_, procI)
{
// Dimension list to all points in the mesh. HJ, 27/Mar/2009
boolList pointLabels(allPoints().size(), false);
// Get reference to list of used faces
const labelList& procFaceLabels = procFaceAddressing_[procI];
// Collect the used points
labelList& procPointLabels = procPointAddressing_[procI];
procPointLabels.setSize(pointLabels.size());
// Two-pass algorithm:
// First loop through live faces and record them in the points list
// Second, visit all inactive zone faces and record the points
label nUsedPoints = 0;
// First pass: live faces
for (label faceI = 0; faceI < nLiveProcFaces_[procI]; faceI++)
{
// Because of the turning index, some labels may be negative
const labelList& facePoints = fcs[mag(procFaceLabels[faceI]) - 1];
forAll (facePoints, pointI)
{
// Mark the point as used
pointLabels[facePoints[pointI]] = true;
}
}
forAll (pointLabels, pointI)
{
if (pointLabels[pointI])
{
procPointLabels[nUsedPoints] = pointI;
nUsedPoints++;
}
}
// Record number of live points
nLivePoints[procI] = nUsedPoints;
// Second pass: zone faces
// Reset point usage list
boolList pointLabelsSecondPass(allPoints().size(), false);
for
(
label faceI = nLiveProcFaces_[procI];
faceI < procFaceLabels.size();
faceI++
)
{
// Because of the turning index, some labels may be negative
const labelList& facePoints = fcs[mag(procFaceLabels[faceI]) - 1];
forAll (facePoints, pointI)
{
// Mark the point as used
if (!pointLabels[facePoints[pointI]])
{
pointLabelsSecondPass[facePoints[pointI]] = true;
}
}
}
forAll (pointLabelsSecondPass, pointI)
{
if (pointLabelsSecondPass[pointI])
{
procPointLabels[nUsedPoints] = pointI;
nUsedPoints++;
}
}
// Reset the size of used points
procPointLabels.setSize(nUsedPoints);
}
// Gather data about globally shared points
// Memory management
{
// Dimension list to all points in the mesh. HJ, 27/Mar/2009
labelList pointsUsage(allPoints().size(), 0);
// Globally shared points are the ones used by more than 2 processors
// Size the list approximately and gather the points
labelHashSet gSharedPoints
(
min(100, nPoints()/1000)
);
// Loop through all the processors and mark up points used by
// processor boundaries. When a point is used twice, it is a
// globally shared point
for (label procI = 0; procI < nProcs_; procI++)
{
// Get list of face labels
const labelList& curFaceLabels = procFaceAddressing_[procI];
// Get start of processor faces
const labelList& curProcessorPatchStarts =
procProcessorPatchStartIndex_[procI];
const labelList& curProcessorPatchSizes =
procProcessorPatchSize_[procI];
// Reset the lookup list
pointsUsage = 0;
forAll (curProcessorPatchStarts, patchi)
{
const label curStart = curProcessorPatchStarts[patchi];
const label curEnd = curStart + curProcessorPatchSizes[patchi];
for
(
label faceI = curStart;
faceI < curEnd;
faceI++
)
{
// Mark the original face as used
// Remember to decrement the index by one (turning index)
//
const label curF = mag(curFaceLabels[faceI]) - 1;
const face& f = fcs[curF];
forAll (f, pointI)
{
if (pointsUsage[f[pointI]] == 0)
{
// Point not previously used
pointsUsage[f[pointI]] = patchi + 1;
}
else if (pointsUsage[f[pointI]] != patchi + 1)
{
// Point used by some other patch = global point!
gSharedPoints.insert(f[pointI]);
}
}
}
}
}
// Grab the result from the hash list
globallySharedPoints_ = gSharedPoints.toc();
sort(globallySharedPoints_);
}
}