rho = thermo.rho();
volScalarField rUA = 1.0/UEqn().A();
U = rUA*UEqn().H();
if (nCorr <= 1)
{
UEqn.clear();
}
if (transonic)
surfaceScalarField phid
(
"phid",
fvc::interpolate(psi)
*(
(fvc::interpolate(U) & mesh.Sf())
+ fvc::ddtPhiCorr(rUA, rho, U, phi)
)
);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pEqn
fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rUA, p)
if
oCorr == nOuterCorr-1
&& corr == nCorr-1
&& nonOrth == nNonOrthCorr
pEqn.solve(mesh.solutionDict().solver("pFinal"));
else
pEqn.solve();
if (nonOrth == nNonOrthCorr)
phi == pEqn.flux();
phi =
fvc::interpolate(rho)*
//+ fvc::ddtPhiCorr(rUA, rho, U, phi)
// Pressure corrector
+ fvc::div(phi)
phi += pEqn.flux();
#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"
//if (oCorr != nOuterCorr-1)
// Explicitly relax pressure for momentum corrector
p.relax();
rho.relax();
Info<< "rho max/min : " << max(rho).value()
<< " " << min(rho).value() << endl;
U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();
DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);
bound(p, pMin);
// For closed-volume cases adjust the pressure and density levels
// to obey overall mass continuity
/*
if (closedVolume)
p += (initialMass - fvc::domainIntegrate(psi*p))
/fvc::domainIntegrate(psi);
*/