2012-09-11 15:42:55 +00:00
|
|
|
/*---------------------------------------------------------------------------*\
|
|
|
|
========= |
|
|
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
|
|
\\ / O peration |
|
|
|
|
\\ / A nd | Copyright held by original author
|
|
|
|
\\/ M anipulation |
|
|
|
|
-------------------------------------------------------------------------------
|
|
|
|
License
|
|
|
|
This file is part of OpenFOAM.
|
|
|
|
|
|
|
|
OpenFOAM is free software; you can redistribute it and/or modify it
|
|
|
|
under the terms of the GNU General Public License as published by the
|
|
|
|
Free Software Foundation; either version 2 of the License, or (at your
|
|
|
|
option) any later version.
|
|
|
|
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with OpenFOAM; if not, write to the Free Software Foundation,
|
|
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
#include "leastSquaresVolPointInterpolation.H"
|
|
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
|
|
|
|
namespace Foam
|
|
|
|
{
|
|
|
|
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
|
|
|
|
defineTypeNameAndDebug(leastSquaresVolPointInterpolation, 0);
|
|
|
|
|
|
|
|
|
|
|
|
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
|
|
|
|
|
2013-07-18 01:43:15 +00:00
|
|
|
void leastSquaresVolPointInterpolation::calcA(List<scalarSquareMatrix>& A) const
|
|
|
|
{
|
2012-09-11 15:42:55 +00:00
|
|
|
//Info << "leastSquaresVolPointInterpolation calcA" << endl;
|
|
|
|
|
|
|
|
const fvMesh& mesh = mesh_;
|
|
|
|
const pointField& points = mesh.points();
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
//- construct 4x4 A matrix for each point
|
|
|
|
//List<scalarSquareMatrix>& A = A_;
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
//- populate A matrix
|
|
|
|
forAll(points, pointi)
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
|
|
|
const labelList& pointCells = mesh.pointCells()[pointi];
|
|
|
|
|
|
|
|
//- this component of matrix does not depend on coordinates
|
|
|
|
A[pointi][3][3] = pointCells.size();
|
|
|
|
|
|
|
|
//- fill the A matrices
|
|
|
|
forAll(pointCells, pointCelli)
|
|
|
|
{
|
|
|
|
const label& celli = pointCells[pointCelli];
|
|
|
|
|
|
|
|
const scalar& x = mesh.C()[celli].component(vector::X);
|
|
|
|
const scalar& y = mesh.C()[celli].component(vector::Y);
|
|
|
|
const scalar& z = mesh.C()[celli].component(vector::Z);
|
|
|
|
|
|
|
|
A[pointi][0][0] += x*x;
|
|
|
|
A[pointi][0][1] += x*y;
|
|
|
|
A[pointi][0][2] += x*z;
|
|
|
|
A[pointi][0][3] += x;
|
|
|
|
|
|
|
|
A[pointi][1][0] += x*y;
|
|
|
|
A[pointi][1][1] += y*y;
|
|
|
|
A[pointi][1][2] += y*z;
|
|
|
|
A[pointi][1][3] += y;
|
|
|
|
|
|
|
|
A[pointi][2][0] += x*z;
|
|
|
|
A[pointi][2][1] += y*z;
|
|
|
|
A[pointi][2][2] += z*z;
|
|
|
|
A[pointi][2][3] += z;
|
|
|
|
|
|
|
|
A[pointi][3][0] += x;
|
|
|
|
A[pointi][3][1] += y;
|
|
|
|
A[pointi][3][2] += z;
|
|
|
|
//A[pointi][3][3] = pointCells.size(); // set above
|
|
|
|
}
|
|
|
|
}
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
//- for boundary points we will include the surrounding face centres
|
|
|
|
forAll(mesh.boundary(), patchi)
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
|
|
|
const vectorField& faceCentres = mesh.boundaryMesh()[patchi].faceCentres();
|
|
|
|
const labelListList& pointFaces = mesh.boundaryMesh()[patchi].pointFaces();
|
|
|
|
|
|
|
|
if(mesh.boundary()[patchi].coupled()) //- for proc boundaries
|
|
|
|
{
|
|
|
|
//- for coupled patches we will use the values at the neighbourField cell centres and we will
|
|
|
|
//- not use the boundary face values
|
|
|
|
//- neighbour cell centre are equal to the faceCell centres plus the delta vector
|
|
|
|
vectorField pDelta = mesh.boundary()[patchi].delta();
|
|
|
|
vectorField faceCellC(faceCentres.size(), vector::zero);
|
|
|
|
forAll(faceCentres, facei)
|
|
|
|
{
|
|
|
|
label celli = mesh.boundaryMesh()[patchi].faceCells()[facei];
|
|
|
|
faceCellC[facei] = mesh.C()[celli];
|
|
|
|
}
|
|
|
|
vectorField neiCellC = faceCellC + pDelta;
|
|
|
|
|
|
|
|
forAll(pointFaces, pointi)
|
|
|
|
{
|
|
|
|
forAll(pointFaces[pointi], pointFacei)
|
|
|
|
{
|
|
|
|
label neiCelli = pointFaces[pointi][pointFacei];
|
|
|
|
const scalar& x = neiCellC[neiCelli].component(vector::X);
|
|
|
|
const scalar& y = neiCellC[neiCelli].component(vector::Y);
|
|
|
|
const scalar& z = neiCellC[neiCelli].component(vector::Z);
|
|
|
|
|
|
|
|
label globalPointi = mesh.boundaryMesh()[patchi].meshPoints()[pointi];
|
|
|
|
|
|
|
|
A[globalPointi][0][0] += x*x;
|
|
|
|
A[globalPointi][0][1] += x*y;
|
|
|
|
A[globalPointi][0][2] += x*z;
|
|
|
|
A[globalPointi][0][3] += x;
|
|
|
|
|
|
|
|
A[globalPointi][1][0] += x*y;
|
|
|
|
A[globalPointi][1][1] += y*y;
|
|
|
|
A[globalPointi][1][2] += y*z;
|
|
|
|
A[globalPointi][1][3] += y;
|
|
|
|
|
|
|
|
A[globalPointi][2][0] += x*z;
|
|
|
|
A[globalPointi][2][1] += y*z;
|
|
|
|
A[globalPointi][2][2] += z*z;
|
|
|
|
A[globalPointi][2][3] += z;
|
|
|
|
|
|
|
|
A[globalPointi][3][0] += x;
|
|
|
|
A[globalPointi][3][1] += y;
|
|
|
|
A[globalPointi][3][2] += z;
|
|
|
|
A[globalPointi][3][3] += 1; // = pointCells.size();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//- each point must use at least 4 neighbouring locations otherwise A is singular
|
|
|
|
//- and simpleMatrix will cannot invert it
|
|
|
|
//- therefore empty patches values are included to make sure A is not singular
|
|
|
|
forAll(pointFaces, pointi)
|
|
|
|
{
|
|
|
|
label globalPointi = mesh.boundaryMesh()[patchi].meshPoints()[pointi];
|
|
|
|
|
|
|
|
forAll(pointFaces[pointi], pointFacei)
|
|
|
|
{
|
|
|
|
//- fix: use pointFace not face philipc
|
|
|
|
label facei = pointFaces[pointi][pointFacei];
|
|
|
|
const scalar& x = faceCentres[facei].component(vector::X);
|
|
|
|
const scalar& y = faceCentres[facei].component(vector::Y);
|
|
|
|
const scalar& z = faceCentres[facei].component(vector::Z);
|
|
|
|
|
|
|
|
A[globalPointi][0][0] += x*x;
|
|
|
|
A[globalPointi][0][1] += x*y;
|
|
|
|
A[globalPointi][0][2] += x*z;
|
|
|
|
A[globalPointi][0][3] += x;
|
|
|
|
|
|
|
|
A[globalPointi][1][0] += x*y;
|
|
|
|
A[globalPointi][1][1] += y*y;
|
|
|
|
A[globalPointi][1][2] += y*z;
|
|
|
|
A[globalPointi][1][3] += y;
|
|
|
|
|
|
|
|
A[globalPointi][2][0] += x*z;
|
|
|
|
A[globalPointi][2][1] += y*z;
|
|
|
|
A[globalPointi][2][2] += z*z;
|
|
|
|
A[globalPointi][2][3] += z;
|
|
|
|
|
|
|
|
A[globalPointi][3][0] += x;
|
|
|
|
A[globalPointi][3][1] += y;
|
|
|
|
A[globalPointi][3][2] += z;
|
|
|
|
A[globalPointi][3][3] += 1; // = pointCells.size();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} //- end of else
|
|
|
|
} //- end of forAll boundary
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void leastSquaresVolPointInterpolation::calcB(List<Field<vector> >& B, const GeometricField<vector, fvPatchField, volMesh>& vf) const
|
|
|
|
{
|
2012-09-11 15:42:55 +00:00
|
|
|
//Info << "leastSquaresVolPointInterpolation calcB" << endl;
|
|
|
|
|
|
|
|
const fvMesh& mesh = mesh_;
|
|
|
|
const pointField& points = mesh.points();
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
//List<Field<vector> >& B = B_;
|
|
|
|
|
|
|
|
for (direction compi = 0; compi < 3; compi++)
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
|
|
|
forAll(points, pointi)
|
|
|
|
{
|
|
|
|
const labelList& pointCells = mesh.pointCells()[pointi];
|
|
|
|
|
|
|
|
forAll(pointCells, pointCelli)
|
|
|
|
{
|
|
|
|
const label& celli = pointCells[pointCelli];
|
|
|
|
|
|
|
|
const scalar& x = mesh.C()[celli].component(vector::X);
|
|
|
|
const scalar& y = mesh.C()[celli].component(vector::Y);
|
|
|
|
const scalar& z = mesh.C()[celli].component(vector::Z);
|
|
|
|
|
|
|
|
const scalar& phiCompi = vf.internalField()[celli].component(compi);
|
|
|
|
|
|
|
|
B[pointi][0].component(compi) += phiCompi*x;
|
|
|
|
B[pointi][1].component(compi) += phiCompi*y;
|
|
|
|
B[pointi][2].component(compi) += phiCompi*z;
|
|
|
|
B[pointi][3].component(compi) += phiCompi;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//- for boundary points we will include the surrounding face centres
|
|
|
|
forAll(mesh.boundary(), patchi)
|
|
|
|
{
|
|
|
|
const vectorField& faceCentres = mesh.boundaryMesh()[patchi].faceCentres();
|
|
|
|
const labelListList& pointFaces = mesh.boundaryMesh()[patchi].pointFaces();
|
|
|
|
const labelList& faceCells = mesh.boundaryMesh()[patchi].faceCells();
|
|
|
|
|
|
|
|
//- fix: do not calculate B for empty patches - philipc
|
|
|
|
if(mesh.boundary()[patchi].coupled())
|
|
|
|
{
|
|
|
|
//- for coupled patches we will use the values at the neighbourField cell centres and we will
|
|
|
|
//- not use the boundary face values
|
|
|
|
//- neighbour cell centre are equal to the faceCell centres plus the delta vector
|
|
|
|
vectorField pDelta = mesh.boundary()[patchi].delta();
|
|
|
|
vectorField faceCellC(faceCentres.size(), vector::zero);
|
|
|
|
forAll(faceCentres, facei)
|
|
|
|
{
|
|
|
|
label celli = mesh.boundaryMesh()[patchi].faceCells()[facei];
|
|
|
|
faceCellC[facei] = mesh.C()[celli];
|
|
|
|
}
|
|
|
|
vectorField neiCellC = faceCellC + pDelta;
|
|
|
|
|
|
|
|
vectorField phiNeiField = vf.boundaryField()[patchi].patchNeighbourField();
|
|
|
|
|
|
|
|
forAll(pointFaces, pointi)
|
|
|
|
{
|
|
|
|
forAll(pointFaces[pointi], pointFacei)
|
|
|
|
{
|
|
|
|
label neiCelli = pointFaces[pointi][pointFacei];
|
|
|
|
const scalar& x = neiCellC[neiCelli].component(vector::X);
|
|
|
|
const scalar& y = neiCellC[neiCelli].component(vector::Y);
|
|
|
|
const scalar& z = neiCellC[neiCelli].component(vector::Z);
|
|
|
|
|
|
|
|
label globalPointi = mesh.boundaryMesh()[patchi].meshPoints()[pointi];
|
|
|
|
|
|
|
|
//- this is the value of phi at the cell centre in the neighbour (i.e. across the interface)
|
|
|
|
scalar phiCompi = phiNeiField[neiCelli].component(compi);
|
|
|
|
|
|
|
|
B[globalPointi][0].component(compi) += phiCompi*x;
|
|
|
|
B[globalPointi][1].component(compi) += phiCompi*y;
|
|
|
|
B[globalPointi][2].component(compi) += phiCompi*z;
|
|
|
|
B[globalPointi][3].component(compi) += phiCompi;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
//- each point must use at least 4 neighbouring locations otherwise A is singular
|
|
|
|
//- and simpleMatrix will cannot invert it
|
|
|
|
//- therefore empty patches values are included to make sure A is not singular
|
|
|
|
forAll(pointFaces, pointi)
|
|
|
|
{
|
|
|
|
forAll(pointFaces[pointi], pointFacei)
|
|
|
|
{
|
|
|
|
//- fix: use pointFace not face philipc
|
|
|
|
label facei = pointFaces[pointi][pointFacei];
|
|
|
|
const scalar& x = faceCentres[facei].component(vector::X);
|
|
|
|
const scalar& y = faceCentres[facei].component(vector::Y);
|
|
|
|
const scalar& z = faceCentres[facei].component(vector::Z);
|
|
|
|
|
|
|
|
label globalPointi = mesh.boundaryMesh()[patchi].meshPoints()[pointi];
|
|
|
|
|
|
|
|
scalar phiCompi = 0.0;
|
|
|
|
if(mesh.boundary()[patchi].type() == "empty")
|
|
|
|
{
|
|
|
|
//- use faceCell value for empty because empty patches do not store any values
|
|
|
|
const label& ci = faceCells[facei];
|
|
|
|
phiCompi = vf.internalField()[ci].component(compi);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
phiCompi = vf.boundaryField()[patchi][facei].component(compi);
|
|
|
|
}
|
|
|
|
|
|
|
|
B[globalPointi][0].component(compi) += phiCompi*x;
|
|
|
|
B[globalPointi][1].component(compi) += phiCompi*y;
|
|
|
|
B[globalPointi][2].component(compi) += phiCompi*z;
|
|
|
|
B[globalPointi][3].component(compi) += phiCompi;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} //- end of forAll boundary
|
|
|
|
} //- end of for all components
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void leastSquaresVolPointInterpolation::interpolate
|
|
|
|
(
|
|
|
|
const GeometricField<vector, fvPatchField, volMesh>& vf,
|
|
|
|
GeometricField<vector, pointPatchField, pointMesh>& pf //Field<vector>& pf
|
|
|
|
) const
|
|
|
|
{
|
2012-09-11 15:42:55 +00:00
|
|
|
//Info << "Interpolating cell to point using leastSquaresVolPointInterpolation" << endl;
|
|
|
|
|
|
|
|
const fvMesh& mesh = mesh_;
|
|
|
|
const pointField& points = mesh.points();
|
|
|
|
|
|
|
|
//- first check that point field is the correct size
|
|
|
|
if(pf.size() != points.size())
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
|
|
|
FatalError << "pointfield should be equal to the number of points in the fvMesh" << endl;
|
|
|
|
}
|
2012-09-11 15:42:55 +00:00
|
|
|
|
|
|
|
//- calculate A and B vector
|
|
|
|
// List<Field<vector> >& B = B_;
|
|
|
|
// calcB(vf);
|
|
|
|
// const List<scalarSquareMatrix>& A = A_;
|
|
|
|
List<scalarSquareMatrix> A(mesh.points().size(), scalarSquareMatrix(4, 0.0));
|
|
|
|
calcA(A);
|
|
|
|
|
|
|
|
List<Field<vector> > B(mesh.points().size(), Field<vector>(4, pTraits<vector>::zero));
|
|
|
|
calcB(B, vf);
|
|
|
|
|
|
|
|
//- solve equations for each component of each point
|
|
|
|
forAll(points, pointi)
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
|
|
|
Field<vector>& source = B[pointi];
|
|
|
|
simpleMatrix<vector> leastSquaresMatrix(A[pointi], source);
|
|
|
|
|
|
|
|
//- solve using Gauss elimination or LU decomposition with pivoting
|
|
|
|
//Field<vector> leastSquaresSol = leastSquaresMatrix.solve();
|
|
|
|
Field<vector> leastSquaresSol = leastSquaresMatrix.LUsolve();
|
|
|
|
|
|
|
|
const scalar& x = mesh.points()[pointi].component(vector::X);
|
|
|
|
const scalar& y = mesh.points()[pointi].component(vector::Y);
|
|
|
|
const scalar& z = mesh.points()[pointi].component(vector::Z);
|
|
|
|
|
|
|
|
//- calculate phi at vertex
|
|
|
|
for (direction compi = 0; compi < 3; compi++)
|
|
|
|
{
|
|
|
|
const scalar& a = leastSquaresSol[0].component(compi);
|
|
|
|
const scalar& b = leastSquaresSol[1].component(compi);
|
|
|
|
const scalar& c = leastSquaresSol[2].component(compi);
|
|
|
|
const scalar& d = leastSquaresSol[3].component(compi);
|
|
|
|
|
|
|
|
pf[pointi].component(compi) = a*x + b*y + c*z + d;
|
|
|
|
}
|
|
|
|
}
|
2012-09-11 15:42:55 +00:00
|
|
|
|
|
|
|
//- proc patches are synchronised
|
|
|
|
pf.correctBoundaryConditions();
|
2013-07-18 01:43:15 +00:00
|
|
|
}
|
2012-09-11 15:42:55 +00:00
|
|
|
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2013-07-18 01:43:15 +00:00
|
|
|
leastSquaresVolPointInterpolation::leastSquaresVolPointInterpolation(const fvMesh& vm)
|
|
|
|
:
|
2012-09-11 15:42:55 +00:00
|
|
|
mesh_(vm) //,
|
|
|
|
//A_(vm.points().size(), scalarSquareMatrix(4, 0.0)),
|
|
|
|
//B_(vm.points().size(), Field<vector>(4, vector::zero))
|
2013-07-18 01:43:15 +00:00
|
|
|
{
|
2012-09-11 15:42:55 +00:00
|
|
|
//calcA();
|
2013-07-18 01:43:15 +00:00
|
|
|
}
|
2013-07-18 01:02:34 +00:00
|
|
|
|
2012-09-11 15:42:55 +00:00
|
|
|
// * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * * //
|
|
|
|
|
2013-07-18 01:43:15 +00:00
|
|
|
leastSquaresVolPointInterpolation::~leastSquaresVolPointInterpolation()
|
|
|
|
{}
|
2012-09-11 15:42:55 +00:00
|
|
|
|
|
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
|
|
|
|
} // End namespace Foam
|
|
|
|
|
|
|
|
// ************************************************************************* //
|