{
// Solve the rothalpy equation
T.storePrevIter();
// Create relative velocity
Urel == U;
mrfZones.relativeVelocity(Urel);
// Create rotational velocity (= omega x r)
Urot = U - Urel;
// Calculate face velocity from absolute flux
surfaceScalarField rhof = fvc::interpolate(rho);
surfaceScalarField phiAbs
(
"phiAbs",
phi
);
mrfZones.absoluteFlux(rhof, phiAbs);
surfaceScalarField faceU("faceU", phiAbs/rhof);
fvScalarMatrix iEqn
fvm::ddt(rho, i)
+ fvm::div(phi, i)
- fvm::laplacian(turbulence->alphaEff(), i)
==
// ddt(p) term removed: steady-state. HJ, 27/Apr/2010
fvc::div(faceU, p, "div(U,p)")
- p*fvc::div(faceU)
// Viscous heating: note sign (devRhoReff has a minus in it)
- (turbulence->devRhoReff() && fvc::grad(Urel))
iEqn.relax();
eqnResidual = iEqn.solve().initialResidual();
maxResidual = max(eqnResidual, maxResidual);
// Calculate enthalpy out of rothalpy
h = i + 0.5*magSqr(Urot);
h.correctBoundaryConditions();
thermo.correct();
psis = thermo.psi()/thermo.Cp()*thermo.Cv();
}