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Figure � : System memory and performance compared to the launch date for the computer clusters installed at HLRS.
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Research into increasingly complex physical problems and the 
emergence of deep learning methodologies place high demands 
on modern HPC systems.

I/O performance and storage gains have not kept pace with 
increase in computing power.

Emerging I/O bottleneck due to growing mismatch between 
ability to produce and store/analyse data.

Ef�icient usage of computing resources is vital when tackling 
modern problems like weather forecast, climate change, 
pandemic response, etc.

I/O bottleneck should be addressed by applying computing 
resources to more ef�iciently handle data.

Data Deluge: The Road Ahead



6From Machine Learning to Deep Learning - Day 3

Patrick Vogler

Reduce the number of simulations.

Reduce the number of states stored in memory/written to �ile system.

Reduce the number of data-points stored in memory/written to �ile.

Reduce the precision of each data-point.

Apply I/O settings optimised for underlying cluster to optimally use 
underlying resources.

Apply established data compression methodologies.

Data Deluge: What can we do?
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Fundamentals: What is Information?

"Information is a form of transmission of human experience 
(knowledge)."

Commonly associated with a state of disorder/uncertainty in classical 
thermodynamics and information theory.

Entropy is used to express the uncertainty in the value of a random 
variable/the outcome of a random process.

Orderliness represents a low entropy state.

Total entropy of a closed system does not decrease.

Possible size reduction is dependent on data-set entropy. Figure � : Example of a low (top) and high 
(bottom)  entropy system.

<
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Fundamentals: What is Compression?

Encoding of information using as-close-to-optimal number of bits as 
possible.

Also known as source coding or bit-rate reduction.

Exploitation of the inherent statistical redundancies in the 
information content.

Subject to time–memory trade-off: higher compression requires more 
computing resources.

Available compression techniques include lossless and lossy 
compression.
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Fundamentals: Lossless vs. Lossy Compression?

Friends, Romans, countrymen, 
lend me your ears; I come to 
bury Caesar, not to praise him.
The evil that men do lives after 
them; The good is oft interred 
with their bones; So let it be with 
Caesar. The noble Brutus Hath 
told you Caesar was ambitious: If 
it were so, it was a grievous fault, 
And grievously hath Caesar 
answer’d it. Here, under leave of 
Brutus and the rest– For Brutus 
is an honourable man; So are 
they all, all honourable men–

There shall, in that time, be 
rumours of things going astray, 
erm, and there shall be a great 
confusion as to where things 
really are, and nobody will really 
know where lieth those little 
things wi-- with the sort of raf�ia 
work base that has an 
attachment. At this time, a friend 
shall lose his friend's hammer 
and the young shall not know 
where lieth the things possessed 
by their fathers that their fathers 
put there only just the night 
before, about eight o'clock.

Figure � : Comparison of information content of the boring prophet speech from The Life of Brian (left) and Marc 
Anthony’s speech in Shakespeare’s Julius Caesar (right).
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Data Compression: Huffman Coding

Optimal Pre�ix Code with variable length for lossless data 
compression.

Generated using binary tree (see left).

Leaf nodes contain symbol and its weight.

Internal nodes contain links to two children and its weight.

Symbol with lower weight assigned to left node representing a �.

Symbol with higher weight assigned to right node representing a �.

Pre�ix Code for a symbol is read from leaf to root.

IMPORTANT: No code word represents a pre�ix for another symbol.

d 1

�

c 1

�
cd 2

�

r 2

rcd 4
�

�

b 2

�
brcd 6

�

a 5

abrcd 11
�

Figure � : Huffman binary tree generated from the exact 
frequencies of the string “abracadabra”
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Data Compression: Lossless

Allows for perfect reconstruction.

Used in cases were no information loss can be tolerated: binaries, 
text, documents, source codes etc.

Forms the foundation for many archive formats (i.e. ZIP) and lossy 
compression schemes (i.e. JPEG, MP�, H.���).

Typically involves two steps:

• Generation of a statistical mode.

• Mapping of input data points to more ef�icient bit sequence.
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Data Compression: LZ��

Dictionary encoder using sliding window.

Search-buffer contains segment of previously seen symbols.

Look-ahead buffer contains segment of subsequent symbols.

Encoder generates codeword triples (o,l,c) as binary output:

• o: Offset between reference and data

• l: length of the match

• c: Character following the match

Forms the basis of many variations including LZW, LZSS, LZMA, etc.

Table 1 : LZ77 Coding example for the string “abracadabra”.

7 6 5 4 3 2 1

a b r a c ada... (0,0,a)
a b r a c a dab... (0,0,b)

a b r a c a d abr... (0,0,r)
a b r a c a d a bra... (3,1,c)

a b r a c a d a b r a (2,1,d)
a b r a c a d a b r a (7,4, )
a d a b r a

Search-buffer Look-ahead buffer Output
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Test Case: Taylor Green Vortex
Simple and well-de�ined hydrodynamics problem.

Initial analytical solution containing a single length scale on a 
���³ grid at t = �.

Quick transition of initial vortex into fully-turbulent �luid 
dynamics.

Broad turbulent scale spectrum useful to study compression 
performance against different length scales.

Evaluation performed for the non-dimensional time-steps t =�, 
�.�, �, �.�, ��, ��.�, ��, ��.� and ��.

Size per time-step: ���.���.��� bytes.

200175150

12510075

50250
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Figure � : Normalised energy dissipation rate as a function of the Taylor-Green Vortex evolution over dimensionless 
time t.

0 5 10 15 20
t [-]

ϵ 
[-

]

0

2

4

6

8

10

12

14
×10-3



16From Machine Learning to Deep Learning - Day 5

Patrick Vogler

Compression Time

The time needed to process a dataset with a speci�ic 
compression algorithm. It is typically expressed as the 
elapsed wall time. 

Compression Power
Measurement of the relative reduction in size 
produced by a data compression algorithm. It is 
typically expressed as the division of uncompressed 
size by compressed size. 

Peak Signal-to-Noise
Ratio between the maximum possible power of a 
signal and the power of corrupting noise. PSNR is 
usually expressed as a logarithmic quantity using the 
decibel scale. 

Switch to folder: cd /data

Compress a �ile: time �za a -m�=compressor -mx=� archive.�z �ilenname

Remove archive: rm archive.�z

compressor: de�late, lzma, lzma�, bzip� �ilename: TGV_�, TGV_��, TGV_���, TGV_���, TGV_���

MetricsSteps

Apply the different compressors provided by the �-Zip command line tool to the Taylor 
Green Vortex Test Case.

Hands-On: Performance of Dictionary Encoders
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Table 2 : Compression ratios achieved by the 7-
Zip compressors when applied to the 
Taylor Green Vortex test case. 

0 75 150

De�late �.� 1.5 1.5

BZip2 4.8 1.7 1.6

LZMA� 30.1 4.9 3.9

LZMA 34.8 5 4

Apply the different compressors provided by the �-Zip command line tool to the Taylor 
Green Vortex Test Case.

Results: Performance of Dictionary Encoders

Achievable compression performance dependant on information 
content.

LZMA� is fastest.

LZMA is most ef�icient.

Limited compression rate.

Long compression time.

Only suitable for data-sets requiring lossless compression.
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Table 3 : Stuttgart S-Bahn Example. Fields applicable to a lossy compressor appear in turquoise.

Zuggattung Zugnummer DS��� Typ Sollzeit Prognosezeit Eingangszeit Service ID

S ���� TSC �� ��.��.���� ��.��.���� ��:��:�� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��:��:�� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��:��:�� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��:��:�� ��.��.���� ��:��:�� �����������
S ���� TSC �� ��.��.���� ��.��.���� ��.��.���� ��:��:�� �����������
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Data Compression: Suitability of Lossless Compression
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Data Compression: Lossy

Generates an inexact approximation of the original data-set.

Used in cases were information loss can be tolerated in favour of 
higher compression ratios: audio, video and image.

Prominent examples are MP�, H.��� and JPEG.

Typically involves three steps:

• Decorrelation

• Rate Control

• Entropy Encoding

Decorrelation typically based on discrete cosine or wavelet 
transform.
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Data Compression: Typical Structure of Lossy Encoder

EWQ

Floating Point
Array

Fixed Point
Array

Wavelet
Coefficients

Compressed
Data-stream
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Discrete Cosine TransformDiscrete Wavelet Transform

Figure � : Symbolic decomposition of a �-dimensional numerical data set using the discrete wavelet transform 
(DWT) on the left and discrete cosine transform (DCT) on the right. Application of the wavelet 
transformation on the entire data set results in sub-bands with loaclized frequency information. 
Application of the cosine transformation on smaller blocks resulted in local blocks with global frequency 
information.
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Figure � : Contour plots of the vorticity magnitude comparing the original and compressed data sets for the non-dimensional time 
step t = ��� of the TGV test case. Compression was performed with a ratio of ���:� using the BWC and ZFP libraries. Contour 
lines are used to highlight the difference between the original (black) and compressed (red) �ield. Magni�ication is provided 
to make the deviation more legible.
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BigWhoop Compression Library

Developed as part of the EU-Projects ExaFLOW and EXCELLERAT.

Derived from the JPEG ���� standard for �- to �-dimensional IEEE 
��� data-sets.

Designed to facilitate random access as well as region-dependent 
distortion-control operations.

Provides an optimally truncated, quality- and resolution scalable 
code-stream.

For source code got to: https://code.hlrs.de/TOPIO/BigWhoop

For questions send an e-mail to: patrick.vogler@hlrs.de
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The Real World Problem: Floating-Point Representation

Floating-point numbers approximate large dynamic range of real numbers.

Image and video compression standards only de�ined for integer values.

IEEE-��� numbers can be split into sign, mantissa and exponent integer �ields.

Non-linearity of mantissa introduces high frequency ‘noise’ on binary level.

Needlessly reduces compression performance.
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Figure � : Progression of the mantissa and biased exponent for the interval {x ∈ R | |x| ≤ �} according to the 
FP�� format. The value -�.� is highlighted with a sign of �, mantissa of �.� and biased exponent of ���.

-�.� = (-�)¹ × (� + �.�) × �(¹²⁷ - ¹²⁷)
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The Real World Problem: Fixed-Point Representation

The number format Q is used to generate a �ixed-point representation with constant 
resolution.

Dynamic range of each �low-�ield variable is �irst centred around zero.

The values are then normalised to the range (-�, +�).

The data-points are then multiplied by the number of fractional bits Qm that represent the 
dynamic range of a synthetic data-type.

The number of fractional bits should not exceed �� bits to prevent over�low following the 
decomposition steps.

The �loating-to-�ixed-point transformation can be used for precision reduction prior to 
compression.
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Compression Time

The time needed to process a dataset with a speci�ic 
compression algorithm. It is typically expressed as the 
elapsed wall time. 

Compression Power
Measurement of the relative reduction in size 
produced by a data compression algorithm. It is 
typically expressed as the division of uncompressed 
size by compressed size. 

Peak Signal-to-Noise
Ratio between the maximum possible power of a 
signal and the power of corrupting noise. PSNR is 
usually expressed as a logarithmic quantity using the 
decibel scale. 

Compress a �ile: ../bin/bwc -c �ilename.eas -qm *¹
     -n *²
     -v � 

Decompress �ile: ../bin/bwc -d �ilename.bwc -n *² -v � 

Analyse �ile: ../bin/bwc -al -i �ilename_d.eas -rf  �ilename.eas

�ilename: TGV_�, TGV_��, TGV_���, TGV_���, TGV_���  *¹ ={x ∊ ℤ| � ≤ x ≤ ��}  *² ={x ∊ ℤ}

MetricsSteps

Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
different number of fractional bits.

Hands-On: Pre-Compression Precision Reduction
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Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
varying number of fractional bits.

Hands-On: Pre-Compression Precision Reduction

Table 4 : Compression ratio, compression time and peak signal-to-noise ratio (PSNR) for the BigWhoop compressor when 
applied to the Taylor Green Vortex test  with varying Q-number format fractional bits.

Qm Compression Ratio Peak Signal-to-Noise Ratio [dB

� �� ��� ��� ��� � �� ��� ��� ���

� ������ ������ ������ ������ ������ ��.� ��.� ��.� ��.� ��.�
� ������ ������ ������ ������ ������ ��.� ��.� ��.� ��.� ��.�
� ������ ����� ����� ����� ����� ��.� ��.� ��.� ��.� ��.�
� ����� ���� ��� ��� ���� ��.� ��.� ��.� ��.� ��.�
�� ���� ��� �� �� �� ��.� ��.� ��.� ��.� ��.�
�� �� � � � � ���.� ���.� ���.� ���.� ���.�
�� �.� �.� �.� �.� �.� ���.� ���.� ���.� ���.� ���.�
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Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
varying number of fractional bits.

Hands-On: Pre-Compression Precision Reduction

Pre-compression precision reduction effective tool for performance improvements.

Compression ratio improvement most notable for low information content.

Signi�icant jump in Peak Signal-to-Noise ratio between �� and �� fractional bits.

Qm can and should be set to �� for most use cases.
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Decorrelation: Discrete Wavelet Transform

The discrete wavelet transform is used to gather the majority of the information content in a 
small number of wavelet coef�icients: Gather as much energy in as little data-points as possible.

The one-dimensional transform splits the data-set into high- and low-frequency bands.

The high-frequency bands are typically sparsely populated.

The low-frequency band should by highly correlated.

Improvement of the information density by subsequent decompositions of the low-frequency 
bands.

Can be extended to multidimensional data-sets by applying the �ilter banks along every 
available, spatial dimension successively.
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Figure � : Symbolic representation of a dyadic wavelet transform applied to a 3-dimensional numerical data set. 
Turquoise arrows indicate the direction of the one-dimensional wavelet transform, green arrows indicate 
a single transform step. The position of the letters H and L in a sub-band label implies the directionality 
of the high and low frequency information.
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Compression Time

The time needed to process a dataset with a speci�ic 
compression algorithm. It is typically expressed as the 
elapsed wall time. 

Compression Power
Measurement of the relative reduction in size 
produced by a data compression algorithm. It is 
typically expressed as the division of uncompressed 
size by compressed size. 

Peak Signal-to-Noise
Ratio between the maximum possible power of a 
signal and the power of corrupting noise. PSNR is 
usually expressed as a logarithmic quantity using the 
decibel scale. 

Compress a �ile: ../bin/bwc -c �ilename.eas -qm �� 
     -dl  x=*¹ y=*¹ z=*¹ ts=�
     -cr ��
     -n *²
     -v �

Decompress �ile: ../bin/bwc -d �ilename.bwc -n *² -v � 

Analyse �ile: ../bin/bwc -al -i �ilename_d.eas -rf  �ilename.eas

�ilename: TGV_�, TGV_��, TGV_���, TGV_���, TGV_���  *¹ ={x ∊ ℤ| � ≤ x ≤ �} *² ={x ∊ ℤ} 

MetricsSteps

Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
varying number of decomposition levels.

Hands-On: Effectiveness of Decorrelation
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Table 5 : Compression ratio, compression time and peak signal-to-noise ratio (PSNR) for the BigWhoop compressor when 
applied to the Taylor Green Vortex test with number of decomposition levels.

Level Compression Ratio Peak Signal-to-Noise Ratio [dB

� �� ��� ��� ��� � �� ��� ��� ���

� ��.� ��.� ��.� ��.� ��.� ��.� ��.� ��.� ��.�� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�
� ��.� ��.� ��.� ��.� ��.� ���.� ��.� ��.� ��.� ��.�

Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
varying number of decomposition levels.

Hands-On: Effectiveness of Decorrelation
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Wavelet decomposition is necessary to improve compression performance.

Low frequency information content bene�its most from high decomposition level.

A minimum of � decomposition levels is advisable.

Number of wavelet decomposition ought to be adjusted according to the use-case.

The Taylor-Green Vortex test case bene�its from � decorrelation levels.

Hands-On: Effectiveness of Decorrelation
Compress the Taylor Green Vortex test case with the BigWhoop compressor using 
varying number of decomposition levels.
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Entropy Encoding: An Overview

The wavelet coef�icients are quantized and stored as an integer array.

Each sub-band is subdivided into precincts.

Each precinct is divided into code-blocks

Each code-block is split into bit-plane �ields.

Every bit-plane is independently processed using the Embedded Block Coding with Optimal 
Truncation (EBCOT) algorithm.

The EBCOT algorithm generates symbols and corresponding probabilities that are used for 
encoding by the arithmetic MQ-Coder.

The �inal bit-stream is truncated using rate/distortion estimations to achieve the user de�ined 
compression ratio.
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Figure �� : Geometric operations performed during the Embedded Block Coding Operation with Optimised Truncation 
(EBCOT). Red squares indicate a precinct, green squares a code-block. MSB denotes the most signi�icant, 
LSB the least signi�icant bit plane and Stripe the encoding width within a code-block plane.
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Entropy Encoding: Precincts

Precinct are de�ined as non-overlapping, spatially related sub-band regions.

Represent the upper bound for the code-block size.

Used for code-stream construction.
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Entropy Encoding: Code-Blocks

Smallest spatial granulation for code-stream rate control.

Form the input for the entropy encoding stage.

Larger code-blocks lead to better compression.

Smaller code-blocks allow for better rate control and fault tolerance.
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Entropy Encoding: Bit-Planes

Set of bits corresponding to the same bit position in the binary 
representation of a data-type.

The number of bit-planes correspond to the number of fractional bits Qm.

Valuable information that is most likely retained will be in the vicinity of the 
Most-Signi�icant-Bit (MSB) plane.

Insigni�icant information that is most likely omitted from the code-stream 
will be close to the Least-Signi�icant-Bit (LSB) plane.

Coding is carried out from MSB to LSB.

MSB

LSB
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Entropy Encoding: Coding Plane

Each bit plane is split into �-dimensional coding planes.

Each coding plane is scanned independently in a zig-zag pattern.

Every bit of a bit-plane is only encoded once in one of three coding passes.

Each coding pass generates a compress data-packet.

The error introduced by omission of each packet is calculated on the �ly.

The pre-de�ined compression ratio is achieved by omitting coding passes 
that introduce the least amount of errors.
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Entropy Encoding: Coding Passes
Signi�icance Propagation

• Coef�icients with signi�icant (non-zero) neighbourhood.

• Encodes the signi�icance and sign information.

Re�inement

• Coef�icients that have become signi�icant in a previous pass.

• Encodes the magnitude information.

Cleanup

• Coef�icients not processed in the previous two passes.

• First pass to be applied to the code-block.

• Encodes the signi�icance and sign information.
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Compression Time

The time needed to process a dataset with a speci�ic 
compression algorithm. It is typically expressed as 
the elapsed wall time. 

Compression Power
Measurement of the relative reduction in size 
produced by a data compression algorithm. It is 
typically expressed as the division of uncompressed 
size by compressed size. 

Peak Signal-to-Noise
Ratio between the maximum possible power of a 
signal and the power of corrupting noise. PSNR is 
usually expressed as a logarithmic quantity using the 
decibel scale. 

Compress a �ile: ../bin/bwc -c �ilename.eas -qm *¹
     -dl  x=*² y=*² z=*² ts=�
     -cb  x=*³ y=*³ z=*³ ts=�
     -p x=*⁴ y=*⁴  z=*⁴ ts=�
     -cr *⁵
     -n *⁵
     -v � 

Decompress �ile: ../bin/bwc -d �ilename.bwc -n *⁵ -v � 

Analyse �ile: ../bin/bwc -al -i �ilename_d.eas -rf  �ilename.eas

�ilename: TGV_�, TGV_��, TGV_���, TGV_���, TGV_��� *¹ ={x ∊ ℤ| � ≤ x ≤ ��}  *² ={x ∊ ℤ| � ≤ x ≤ �}  *³ ={x ∊ ℤ| � ≤ x ≤ �}
*⁴ ={x ∊ ℤ| � ≤ x ≤ �}  *⁵ ={x ∊ ℤ}

MetricsSteps

Explore the Taylor Green Vortex test case with the BigWhoop compressor using different 
settings.

Hands-On: Explore
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Figure �� : Visualisation of the Taylor-Green Vortex test case on a ���³ grid. The vorticity magnitude is shown from left to 
right for the non-dimensional times t= ��, ��, ��� and ���.
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Figure �� : Visualisation of the decompressed Taylor-Green Vortex test case on a ���³ grid for a compression ratio of � : ���. 
The vorticity magnitude is shown from left to right for the non-dimensional times t= ��, ��, ��� and ���.
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Table 6 : Compression ratio, compression time and peak signal-to-noise ratio (PSNR) for the BigWhoop, ZFP and �-Zip 
compressor. The- best results appear in turquoise.

Time-step Compression Ratio Compression Time Peak Signal-to-Noise Ratio

BWC ZFP �-Zip BWC ZFP �-Zip BWC ZFP �-Zip�

� ��.� ��.� ��.� �.� �.� ���.� ���.� ��.� ∞
�.� ��.� ��.� �.� �.� �.� ���.� ���.� ��.� ∞
� ��.� ��.� �.� �.� �.� ���.� ��.� ��.� ∞
�.� ��.� ��.� �.� �.� �.� ���.� ��.� ��.� ∞
�� ��.� ��.� �.� ��.� �.� ���.� ��.� ��.� ∞
��.� ��.� ��.� �.� ��.� �.� ���.� ��.� ��.� ∞
�� ��.� ��.� �.� ��.� �.� ���.� ��.� ��.� ∞
��.� ��.� ��.� �.� ��.� �.� ���.� ��.� ��.� ∞
�� ��.� ��.� �.� ��.� �.� ���.� ��.� ��.� ∞

� The PSNR for the �- Zip compressor is always in�inity due to its lossless nature
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Figure �� : Comparison of normalised energy dissipation rate as a function of the Taylor-Green vortex evolution at a 
compression ratio of ���:� for the non-dimensional time-steps t = �, ��, ��, ��, ���, ���, ���, ���, ���.
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Figure �� : Histogram plot of the relative error for the non-dimensional time steps (t = �. . . ���) of the Taylor-Green vortex test case. The original 
data set is compared with BWC and ZFP compressed data sets with a compression ratio of ��:� and ���:�. The evaluation was 
performed for the variables ρ, ρE, ρu�, ρu� and ρu� on ��� bins of equal width.
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Taylor Green Vortex: Results
Dictionary encoders are slow, offer modest compression but deliver 
perfect reconstruction.

�zip is not suitable for large numerical data-sets.

Block transform (ZFP) based compressor is fast, offers good 
compression and fair reconstruction.

ZFP is unsuitable for post-processing of turbulence statistics due to 
its tendencies to dissipate a lot of the high-freq. information.

Discrete Wavelet Transform (BWC) based compression is reasonably 
fast, offers good compression and excellent reconstruction.

BigWhoop can be used for demanding pre-processing applications 
requiring good information retention.

200175150

12510075

50250
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Test Case: Turbulent Flat Plate Flow
Direct numerical simulation of a turbulent �low over a �lat plate 
at Ma = �.�.

Reynolds-Number range of Reθ = ��� - ���� on a nx × ny × nz 
= ����� × ��� × ���� grid.

Size per time-step: ���.���.���.��� bytes.

Encoding of entire simulation and sub-domain at compression 
ratios � : ��, � : ��� and � : ���.

Compression performance evaluated for sub-domains at in- and 
outlet of the complete domain as well as the sub-domain at the 
outlet.

Error Histogram calculated on wall-parallel, �� grid points thick 
slices.

Outlet-SDOutletInlet

Near Wall Near Edge

Computational Domain

u
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Figure �� : Absolute error between original and reconstructed velocity �ield for compression ratios of � : ��, � : ��� and  � : 
���. The Left two columns were evaluated using two sub-domains at the in- and outlet of the complete 
simulation domain. For the right column, only the sub-domain at the outlet was compressed. 
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Figure �� : Relative error between original and reconstructed velocity �ield for compression ratios of � : ��, � : ��� and � : ���. 
The Left two columns were evaluated using two sub-domains at the in- and outlet of the complete simulation 
domain. For the right column, only the sub-domain at the outlet was compressed.
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Test Case: Turbulent Flat Plate Flow
Compression library shows modest absolute error for high 
compression ratios.

Separate sub-domain compression of region of interest doesn’t 
offer improvements in reconstruction.

Areas close to the wall exhibit signi�icant relative errors due to 
values that are close or equal to zero.

No-slip boundary condition can be lost due to the shift operation 
in the �loating-to-�ixed-point transformation.

True zeroes should be encoded separately.
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Compression can and should be used to effectively reduce the memory footprint 
of numerical data-sets.

Data compression approach needs to �it the use case:

• Fast dictionary encoders for lossless application (i.e. LZMA, Zstd).

• Fast block transform coding for visualisation (i.e. ZFP).

• Ef�icient discrete wavelet transform coding for data analysis (i.e. BigWhoop).

Pre-compression truncation and parallelization paramount for good 
compression performance.

Conclusion



Deep Learning Workshop - Day 3

Patrick Vogler

OutlookConclusion

ApplicationBigWhoop

FundamentalsMotivation



61From Machine Learning to Deep Learning - Day 3

Patrick Vogler

Global code-stream assembly.

Adaption of BigWhoop codec for non-conforming compute grids.

Decreased compression time using rate based sub-band skip.

Implementation of streaming function for on the �ly compression.

Conclusion


