forked from SiVeGCS/dask_template
Compare commits
7 commits
Author | SHA1 | Date | |
---|---|---|---|
26cb3ed722 | |||
aa3d6b6799 | |||
1eb6024fd0 | |||
1e56496f56 | |||
3ceddcaed1 | |||
48328cc85f | |||
251f190e11 |
16 changed files with 217 additions and 551 deletions
15
.gitignore
vendored
15
.gitignore
vendored
|
@ -1,12 +1,5 @@
|
|||
# Compiled source
|
||||
__pycache__
|
||||
|
||||
|
||||
# Packages
|
||||
*.gz
|
||||
*.rar
|
||||
*.tar
|
||||
*.zip
|
||||
|
||||
# OS generated files
|
||||
.DS_Store
|
||||
notebooks/
|
||||
/deployment_scripts/create-env.sh
|
||||
/deployment_scripts/deploy-env.sh
|
||||
/deployment_scripts/environment.yaml
|
187
README.md
187
README.md
|
@ -1,162 +1,127 @@
|
|||
# Ray: How to launch a Ray Cluster on Hawk?
|
||||
# Dask: How to execute python workloads using a Dask cluster on Vulcan
|
||||
|
||||
This guide shows you how to launch a Ray cluster on HLRS' Hawk system.
|
||||
This repository looks at a deployment of a Dask cluster on Vulcan, and executing your programs using this cluster.
|
||||
|
||||
## Table of Contents
|
||||
- [Ray: How to launch a Ray Cluster on Hawk?](#ray-how-to-launch-a-ray-cluster-on-hawk)
|
||||
- [Table of Contents](#table-of-contents)
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Getting Started](#getting-started)
|
||||
- [Launch a local Ray Cluster in Interactive Mode](#launch-a-local-ray-cluster-in-interactive-mode)
|
||||
- [Launch a Ray Cluster in Batch Mode](#launch-a-ray-cluster-in-batch-mode)
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before building the environment, make sure you have the following prerequisites:
|
||||
- [Conda Installation](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html): Ensure that Conda is installed on your local system.
|
||||
- [Conda-Pack](https://conda.github.io/conda-pack/) installed in the base environment: Conda pack is used to package the Conda environment into a single tarball. This is used to transfer the environment to the target system.
|
||||
- `linux-64` platform for installing the Conda packages because Conda/pip downloads and installs precompiled binaries suitable to the architecture and OS of the local environment.
|
||||
|
||||
For more information, look at the documentation for [Conda on HLRS HPC systems](https://kb.hlrs.de/platforms/index.php/How_to_move_local_conda_environments_to_the_clusters)
|
||||
- [Getting Started](#getting-started)
|
||||
- [Usage](#usage)
|
||||
- [Notes](#notes)
|
||||
|
||||
## Getting Started
|
||||
|
||||
Only the main and r channels are available using the conda module on the clusters. To use custom packages, we need to move the local conda environment to Hawk.
|
||||
### 1. Build and transfer the Conda environment to Vulcan:
|
||||
|
||||
**Step 1.** Clone this repository to your local machine:
|
||||
Only the `main` and `r` channels are available using the Conda module on the clusters. To use custom packages, we need to move the local Conda environment to Vulcan.
|
||||
|
||||
Follow the instructions in [the Conda environment builder repository](https://code.hlrs.de/SiVeGCS/conda-env-builder), which includes a YAML file for building a test environment.
|
||||
|
||||
### 2. Allocate workspace on Vulcan:
|
||||
|
||||
Proceed to the next step if you have already configured your workspace. Use the following command to create a workspace on the high-performance filesystem, which will expire in 10 days. For more information, such as how to enable reminder emails, refer to the [workspace mechanism](https://kb.hlrs.de/platforms/index.php/Workspace_mechanism) guide.
|
||||
|
||||
```bash
|
||||
git clone <repository_url>
|
||||
ws_allocate dask_workspace 10
|
||||
ws_find dask_workspace # find the path to workspace, which is the destination directory in the next step
|
||||
```
|
||||
|
||||
**Step 2.** Go into the directory and create an environment using Conda and environment.yaml.
|
||||
|
||||
Note: Be sure to add the necessary packages in `deployment_scripts/environment.yaml`:
|
||||
|
||||
```bash
|
||||
cd deployment_scripts
|
||||
./create-env.sh <your-env>
|
||||
```
|
||||
|
||||
**Step 3.** Package the environment and transfer the archive to the target system:
|
||||
|
||||
```bash
|
||||
(base) $ conda pack -n <your-env> -o ray_env.tar.gz # conda-pack must be installed in the base environment
|
||||
```
|
||||
|
||||
A workspace is suitable to store the compressed Conda environment archive on Hawk. Proceed to the next step if you have already configured your workspace. Use the following command to create a workspace on the high-performance filesystem, which will expire in 10 days. For more information, such as how to enable reminder emails, refer to the [workspace mechanism](https://kb.hlrs.de/platforms/index.php/Workspace_mechanism) guide.
|
||||
|
||||
```bash
|
||||
ws_allocate hpda_project 10
|
||||
ws_find hpda_project # find the path to workspace, which is the destination directory in the next step
|
||||
```
|
||||
|
||||
You can send your data to an existing workspace using:
|
||||
|
||||
```bash
|
||||
scp ray_env.tar.gz <username>@hawk.hww.hlrs.de:<workspace_directory>
|
||||
rm ray_env.tar.gz # We don't need the archive locally anymore.
|
||||
```
|
||||
|
||||
**Step 4.** Clone the repository on Hawk to use the deployment scripts and project structure:
|
||||
### 3. Clone the repository on Vulcan to use the deployment scripts and project structure:
|
||||
|
||||
```bash
|
||||
cd <workspace_directory>
|
||||
git clone <repository_url>
|
||||
```
|
||||
|
||||
## Launch a local Ray Cluster in Interactive Mode
|
||||
|
||||
Using a single node interactively provides opportunities for faster code debugging.
|
||||
|
||||
**Step 1.** On the Hawk login node, start an interactive job using:
|
||||
### 4. Send all the code to the appropriate directory on Vulcan using `scp`:
|
||||
|
||||
```bash
|
||||
qsub -I -l select=1:node_type=rome -l walltime=01:00:00
|
||||
scp <your_script>.py <destination_host>:<destination_directory>
|
||||
```
|
||||
|
||||
**Step 2.** Go into the project directory:
|
||||
### 5. SSH into Vulcan and start a job interactively using:
|
||||
|
||||
```bash
|
||||
cd <project_directory>/deployment_scripts
|
||||
qsub -I -N DaskJob -l select=1:node_type=clx-21 -l walltime=02:00:00
|
||||
```
|
||||
Note: For multiple nodes, it is recommended to write a `.pbs` script and submit it using `qsub`. Follow section [Multiple Nodes](#multiple-nodes) for more information.
|
||||
|
||||
**Step 3.** Deploy the conda environment to the ram disk:
|
||||
|
||||
Change the following line by editing `deploy-env.sh`:
|
||||
### 6. Go into the directory with all code:
|
||||
|
||||
```bash
|
||||
export WS_DIR=<workspace_dir>
|
||||
cd <destination_directory>
|
||||
```
|
||||
|
||||
Then, use the following command to deploy and activate the environment:
|
||||
### 7. Initialize the Dask cluster:
|
||||
|
||||
```bash
|
||||
source deploy-env.sh
|
||||
source deploy-dask.sh "$(pwd)"
|
||||
```
|
||||
Note: Make sure all permissions are set using `chmod +x`.
|
||||
Note: At the moment, the deployment is verbose, and there is no implementation to silence the logs.
|
||||
Note: Make sure all permissions are set using `chmod +x` for all scripts.
|
||||
|
||||
**Step 4.** Initialize the Ray cluster.
|
||||
## Usage
|
||||
|
||||
You can use a Python interpreter to start a local Ray cluster:
|
||||
|
||||
```python
|
||||
import ray
|
||||
|
||||
ray.init()
|
||||
```
|
||||
|
||||
**Step 5.** Connect to the dashboard.
|
||||
|
||||
Warning: Do not change the default dashboard host `127.0.0.1` to keep Ray cluster reachable by only you.
|
||||
|
||||
Note: We recommend using a dedicated Firefox profile for accessing web-based services on HLRS Compute Platforms. If you haven't created a profile, check out our [guide](https://kb.hlrs.de/platforms/index.php/How_to_use_Web_Based_Services_on_HLRS_Compute_Platforms).
|
||||
|
||||
You need the job id and the hostname for your current job. You can obtain this information on the login node using:
|
||||
### Single Node
|
||||
To run the application interactively on a single node, follow points 4, 5, 6 and, 7 from [Getting Started](#getting-started), and execute the following command after all the job has started:
|
||||
|
||||
```bash
|
||||
qstat -anw # get the job id and the hostname
|
||||
# Load the Conda module
|
||||
module load bigdata/conda
|
||||
source activate # activates the base environment
|
||||
|
||||
# List available Conda environments for verification purposes
|
||||
conda env list
|
||||
|
||||
# Activate a specific Conda environment.
|
||||
conda activate dask_environment # you need to execute `source activate` first, or use `source [ENV_PATH]/bin/activate`
|
||||
```
|
||||
|
||||
Then, on your local computer,
|
||||
After the environment is activated, you can run the python interpretor:
|
||||
|
||||
```bash
|
||||
export PBS_JOBID=<job-id> # e.g., 2316419.hawk-pbs5
|
||||
ssh <compute-host> # e.g., r38c3t8n3
|
||||
python
|
||||
```
|
||||
|
||||
Check your SSH config in the first step if this doesn't work.
|
||||
|
||||
Then, launch Firefox web browser using the configured profile. Open `localhost:8265` to access the Ray dashboard.
|
||||
|
||||
## Launch a Ray Cluster in Batch Mode
|
||||
|
||||
Let us [estimate the value of π](https://docs.ray.io/en/releases-2.8.0/ray-core/examples/monte_carlo_pi.html) as an example application.
|
||||
|
||||
**Step 1.** Add execution permissions to `start-ray-worker.sh`
|
||||
|
||||
Or to run a full script:
|
||||
```bash
|
||||
cd deployment_scripts
|
||||
chmod +x start-ray-worker.sh
|
||||
python <your-script>.py
|
||||
```
|
||||
|
||||
**Step 2.** Submit a job to launch the head and worker nodes.
|
||||
|
||||
You must modify the following lines in `submit-ray-job.sh`:
|
||||
- Line 3 changes the cluster size. The default configuration launches a 3 node cluster.
|
||||
- `export WS_DIR=<workspace_dir>` - set the correct workspace directory.
|
||||
- `export PROJECT_DIR=$WS_DIR/<project_name>` - set the correct project directory.
|
||||
|
||||
Note: The job script `src/monte-carlo-pi.py` waits for all nodes in the Ray cluster to become available. Preserve this pattern in your Python code while using a multiple node Ray cluster.
|
||||
|
||||
Launch the job and monitor the progress. As the job starts, its status (S) shifts from Q (Queued) to R (Running). Upon completion, the job will no longer appear in the `qstat -a` display.
|
||||
### Multiple Nodes
|
||||
To run the application on multiple nodes, you need to write a `.pbs` script and submit it using `qsub`. Follow lines 1-4 from the [Getting Started](#getting-started) section. Write a `submit-dask-job.pbs` script:
|
||||
|
||||
```bash
|
||||
qsub submit-ray-job.pbs
|
||||
#!/bin/bash
|
||||
#PBS -N dask-job
|
||||
#PBS -l select=3:node_type=rome
|
||||
#PBS -l walltime=1:00:00
|
||||
|
||||
#Go to the directory where the code is
|
||||
cd <destination_directory>
|
||||
|
||||
#Deploy the Dask cluster
|
||||
source deploy-dask.sh "$(pwd)"
|
||||
|
||||
#Run the python script
|
||||
python <your-script>.py
|
||||
```
|
||||
|
||||
A more thorough example is available in the `deployment_scripts` directory under `submit-dask-job.pbs`.
|
||||
|
||||
And then execute the following commands to submit the job:
|
||||
|
||||
```bash
|
||||
qsub submit-dask-job.pbs
|
||||
qstat -anw # Q: Queued, R: Running, E: Ending
|
||||
ls -l # list files after the job finishes
|
||||
cat ray-job.o... # inspect the output file
|
||||
cat ray-job.e... # inspect the error file
|
||||
cat dask-job.o... # inspect the output file
|
||||
cat dask-job.e... # inspect the error file
|
||||
```
|
||||
|
||||
If you need to delete the job, use `qdel <job-id>`. If this doesn't work, use the `-W force` option: `qdel -W force <job-id>`
|
||||
## Notes
|
||||
|
||||
Note: Dask Cluster is set to verbose, add the following to your code while connecting to the Dask cluster:
|
||||
```python
|
||||
client = Client(..., silence_logs='error')
|
||||
```
|
||||
|
||||
Note: Replace all filenames within `<>` with the actual values applicable to your project.
|
|
@ -1,23 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
# Display usage
|
||||
if [ "$#" -ne 1 ]; then
|
||||
echo "Usage: $0 <conda_environment_name>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Name of the Conda environment
|
||||
CONDA_ENV_NAME=$1
|
||||
|
||||
# Check if the Conda environment already exists
|
||||
if conda env list | grep -q "$CONDA_ENV_NAME"; then
|
||||
|
||||
echo "Environment '$CONDA_ENV_NAME' already exists."
|
||||
|
||||
else
|
||||
|
||||
echo "Environment '$CONDA_ENV_NAME' does not exist, creating it."
|
||||
|
||||
# Create Conda environment
|
||||
CONDA_SUBDIR=linux-64 conda env create --name $CONDA_ENV_NAME -f environment.yaml
|
||||
fi
|
31
deployment_scripts/dask-worker.sh
Normal file
31
deployment_scripts/dask-worker.sh
Normal file
|
@ -0,0 +1,31 @@
|
|||
#!/bin/bash
|
||||
|
||||
#Get the current workspace directory and the master node
|
||||
export CURRENT_WORKSPACE=$1
|
||||
export DASK_SCHEDULER_HOST=$2
|
||||
|
||||
# Path to localscratch
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Setting up Dask environment"
|
||||
export DASK_ENV="$HOME/dask"
|
||||
mkdir -p $DASK_ENV
|
||||
|
||||
# Extract Dask environment in localscratch
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Extracting Dask environment to $DASK_ENV"
|
||||
#tar -xzf $CURRENT_WORKSPACE/dask-env.tar.gz -C $DASK_ENV
|
||||
#chmod -R 700 $DASK_ENV
|
||||
|
||||
# Start the dask environment
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Setting up Dask environment"
|
||||
source $DASK_ENV/bin/activate
|
||||
conda-unpack
|
||||
|
||||
# Start Dask worker
|
||||
export DASK_SCHEDULER_PORT="8786" # Replace with the port on which the Dask scheduler is running
|
||||
|
||||
# Additional Dask worker options can be added here if needed
|
||||
# Change local directory if memory is an issue
|
||||
|
||||
# Change directory to localscratch and start Dask worker
|
||||
cd $DASK_ENV
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Starting Dask worker at $DASK_SCHEDULER_HOST on port $DASK_SCHEDULER_PORT"
|
||||
dask worker $DASK_SCHEDULER_HOST:$DASK_SCHEDULER_PORT
|
54
deployment_scripts/deploy-dask.sh
Normal file
54
deployment_scripts/deploy-dask.sh
Normal file
|
@ -0,0 +1,54 @@
|
|||
#!/bin/bash
|
||||
|
||||
export CURRENT_WORKSPACE=$1
|
||||
|
||||
# Check if running in a PBS Job environment
|
||||
if [ -z ${PBS_NODEFILE+x} ]; then
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] ERROR: This script is meant to run as a part of PBS Job. Don't start it at login nodes."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export NUM_NODES=$(wc -l < $PBS_NODEFILE)
|
||||
|
||||
if [ $NUM_NODES -lt 2 ]; then
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] WARNING: You have a single node job running. Dask cluster requires at least 2 nodes."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export ALL_NODES=$(cat $PBS_NODEFILE)
|
||||
export SCHEDULER_NODE="$(head -n1 $PBS_NODEFILE)-ib"
|
||||
export WORKER_NODES=$(tail -n+2 $PBS_NODEFILE)
|
||||
|
||||
export DASK_SCHEDULER_PORT=8786
|
||||
export DASK_UI_PORT=8787
|
||||
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask cluster with $NUM_NODES nodes."
|
||||
# Path to localscratch
|
||||
export DASK_ENV="$HOME/dask"
|
||||
mkdir -p $DASK_ENV
|
||||
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Extracting Dask environment to $DASK_ENV"
|
||||
# Extract Dask environment in localscratch
|
||||
tar -xzf $CURRENT_WORKSPACE/dask-env.tar.gz -C $DASK_ENV
|
||||
chmod -R 700 $DASK_ENV
|
||||
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Setting up Dask environment"
|
||||
# Start the dask environment
|
||||
source $DASK_ENV/bin/activate
|
||||
conda-unpack
|
||||
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask Scheduler at $SCHEDULER_NODE on port $DASK_SCHEDULER_PORT"
|
||||
dask scheduler --host $SCHEDULER_NODE --port $DASK_SCHEDULER_PORT &
|
||||
|
||||
export NUM_NODES=$(sort $PBS_NODEFILE |uniq | wc -l)
|
||||
|
||||
# Assuming you have a Dask worker script named 'dask-worker-script.py', modify this accordingly
|
||||
for ((i=1;i<$NUM_NODES;i++)); do
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask Worker at $i"
|
||||
pbsdsh -n $i -o -- bash -l -c "source $CURRENT_WORKSPACE/dask-worker.sh $CURRENT_WORKSPACE $SCHEDULER_NODE"
|
||||
done
|
||||
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Dask cluster ready, wait for workers to connect to the scheduler."
|
||||
|
||||
# Optionally, you can provide a script for the workers to execute using ssh, similar to Spark.
|
||||
# Example: ssh $node "source activate your_conda_env && python your_dask_worker_script.py" &
|
|
@ -1,43 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
export WS_DIR=<workspace_dir>
|
||||
|
||||
# Get the first character of the hostname
|
||||
first_char=$(hostname | cut -c1)
|
||||
|
||||
# Check if the first character is not "r"
|
||||
if [[ $first_char != "r" ]]; then
|
||||
# it's not a cpu node.
|
||||
echo "Hostname does not start with 'r'."
|
||||
# Get the first seven characters of the hostname
|
||||
first_seven_chars=$(hostname | cut -c1,2,3,4,5,6,7)
|
||||
# Check if it is an ai node
|
||||
if [[ $first_seven_chars != "hawk-ai" ]]; then
|
||||
echo "Hostname does not start with 'hawk-ai' too. Exiting."
|
||||
return 1
|
||||
else
|
||||
echo "GPU node detected."
|
||||
export OBJ_STR_MEMORY=350000000000
|
||||
export TEMP_CHECKPOINT_DIR=/localscratch/$PBS_JOBID/model_checkpoints/
|
||||
mkdir -p $TEMP_CHECKPOINT_DIR
|
||||
fi
|
||||
else
|
||||
echo "CPU node detected."
|
||||
fi
|
||||
|
||||
module load bigdata/conda
|
||||
|
||||
export RAY_DEDUP_LOGS=0
|
||||
|
||||
export ENV_ARCHIVE=ray_env.tar.gz
|
||||
export CONDA_ENVS=/run/user/$PBS_JOBID/envs
|
||||
export ENV_NAME=ray_env
|
||||
export ENV_PATH=$CONDA_ENVS/$ENV_NAME
|
||||
|
||||
mkdir -p $ENV_PATH
|
||||
|
||||
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH
|
||||
|
||||
source $ENV_PATH/bin/activate
|
||||
|
||||
export CONDA_ENVS_PATH=CONDA_ENVS
|
|
@ -1,18 +1,4 @@
|
|||
# Reference: Cluster Deployment Scripts
|
||||
|
||||
Wiki link:
|
||||
|
||||
Motivation: This document aims to show users how to use additional Dask deployment scripts to streamline the deployment and management of a Dask cluster on a high-performance computing (HPC) environment.
|
||||
|
||||
Structure:
|
||||
- [ ] [Tutorial](https://diataxis.fr/tutorials/)
|
||||
- [ ] [How-to guide](https://diataxis.fr/how-to-guides/)
|
||||
- [x] [Reference](https://diataxis.fr/reference/)
|
||||
- [ ] [Explanation](https://diataxis.fr/explanation/)
|
||||
|
||||
To do:
|
||||
|
||||
---
|
||||
# Reference Guide: Dask Cluster Deployment Scripts
|
||||
|
||||
## Overview
|
||||
|
||||
|
@ -36,40 +22,7 @@ Before using these scripts, ensure that the following prerequisites are met:
|
|||
|
||||
3. **SSH Setup**: Ensure that SSH is set up and configured on your system for remote server communication.
|
||||
|
||||
## 1. create-env.sh
|
||||
|
||||
### Overview
|
||||
|
||||
`create-env.sh` is designed to create a Conda environment. It checks for the existence of the specified environment and either creates it or notifies the user if it already exists.
|
||||
Note: Define your Conda environment in `environment.yaml` before running this script.
|
||||
|
||||
### Usage
|
||||
|
||||
```bash
|
||||
./create-env.sh <conda_environment_name>
|
||||
```
|
||||
|
||||
### Note
|
||||
|
||||
- This script is intended to run on a local system where Conda is installed.
|
||||
|
||||
## 2. deploy-env.sh
|
||||
|
||||
### Overview
|
||||
|
||||
`deploy-env.sh` is responsible for deploying the Conda environment to a remote server. If the tar.gz file already exists, it is copied; otherwise, it is created before being transferred.
|
||||
|
||||
### Usage
|
||||
|
||||
```bash
|
||||
./deploy-env.sh <environment_name> <destination_directory>
|
||||
```
|
||||
|
||||
### Note
|
||||
|
||||
- This script is intended to run on a local system.
|
||||
|
||||
## 3. deploy-dask.sh
|
||||
## 1. deploy-dask.sh
|
||||
|
||||
### Overview
|
||||
|
||||
|
@ -86,7 +39,7 @@ Note: Define your Conda environment in `environment.yaml` before running this sc
|
|||
- This script is designed for an HPC environment with PBS job scheduling.
|
||||
- Modifications may be necessary for different job schedulers.
|
||||
|
||||
## 4. dask-worker.sh
|
||||
## 2. dask-worker.sh
|
||||
|
||||
### Overview
|
||||
|
||||
|
@ -96,9 +49,3 @@ Note: Define your Conda environment in `environment.yaml` before running this sc
|
|||
|
||||
- Execute this script on each allocated node to connect them to the Dask scheduler.
|
||||
- Designed for use with PBS job scheduling.
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Create Conda Environment**: Execute `create-env.sh` to create a Conda environment locally.
|
||||
2. **Deploy Conda Environment**: Execute `deploy-env.sh` to deploy the Conda environment to a remote server.
|
||||
3. **Deploy Dask Cluster**: Execute `deploy-dask.sh` to start the Dask cluster on an HPC environment.
|
|
@ -1,23 +0,0 @@
|
|||
name: ray
|
||||
channels:
|
||||
- defaults
|
||||
dependencies:
|
||||
- python=3.10
|
||||
- pip
|
||||
- pip:
|
||||
- ray==2.8.0
|
||||
- "ray[default]==2.8.0"
|
||||
- dask==2022.10.1
|
||||
- torch
|
||||
- pydantic<2
|
||||
- six
|
||||
- torch
|
||||
- tqdm
|
||||
- pandas<2
|
||||
- scikit-learn
|
||||
- matplotlib
|
||||
- optuna
|
||||
- seaborn
|
||||
- tabulate
|
||||
- jupyterlab
|
||||
- autopep8
|
|
@ -1,27 +0,0 @@
|
|||
FROM python:3.9
|
||||
|
||||
# -------------------------------------------------------------------
|
||||
# Install Ray and essential packages.
|
||||
# For more information on Ray installation, see:
|
||||
# https://docs.ray.io/en/latest/ray-overview/installation.html
|
||||
# Install the latest Dask versions that are compatible with
|
||||
# Ray nightly. For more information, see:
|
||||
# https://docs.ray.io/en/latest/data/dask-on-ray.html
|
||||
# -------------------------------------------------------------------
|
||||
|
||||
RUN pip install --no-cache-dir \
|
||||
"ray==2.8.0" \
|
||||
"ray[default]==2.8.0" \
|
||||
"dask==2022.10.1" \
|
||||
torch \
|
||||
"pydantic<2" \
|
||||
six \
|
||||
"tqdm<2" \
|
||||
"pandas<2" \
|
||||
scikit-learn \
|
||||
matplotlib \
|
||||
optuna \
|
||||
seaborn \
|
||||
tabulate \
|
||||
jupyterlab \
|
||||
autopep8
|
|
@ -1,26 +0,0 @@
|
|||
#!/bin/bash
|
||||
|
||||
if [ $# -ne 5 ]; then
|
||||
echo "Usage: $0 <ws_dir> <env_archive> <ray_address> <redis_password> <obj_store_memory>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
export WS_DIR=$1
|
||||
export ENV_ARCHIVE=$2
|
||||
export RAY_ADDRESS=$3
|
||||
export REDIS_PASSWORD=$4
|
||||
export OBJECT_STORE_MEMORY=$5
|
||||
|
||||
export ENV_PATH=/run/user/$PBS_JOBID/ray_env # We use the ram disk to extract the environment packages since a large number of files decreases the performance of the parallel file system.
|
||||
|
||||
mkdir -p $ENV_PATH
|
||||
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH
|
||||
source $ENV_PATH/bin/activate
|
||||
conda-unpack
|
||||
|
||||
ray start --address=$RAY_ADDRESS \
|
||||
--redis-password=$REDIS_PASSWORD \
|
||||
--object-store-memory=$OBJECT_STORE_MEMORY \
|
||||
--block
|
||||
|
||||
rm -rf $ENV_PATH # It's nice to clean up before you terminate the job
|
33
deployment_scripts/submit-dask-job.pbs
Normal file
33
deployment_scripts/submit-dask-job.pbs
Normal file
|
@ -0,0 +1,33 @@
|
|||
#!/bin/bash
|
||||
#PBS -N dask-job
|
||||
#PBS -l select=2:node_type=rome
|
||||
#PBS -l walltime=1:00:00
|
||||
|
||||
export PYTHON_FILE= # Path to the Python file you want to run
|
||||
export CURRENT_WORKSPACE= # Path to the workspace where you have pulled this repo and the dask-env.tar.gz file
|
||||
|
||||
export ALL_NODES=$(cat $PBS_NODEFILE)
|
||||
export SCHEDULER_NODE="$(head -n1 $PBS_NODEFILE)-ib"
|
||||
export WORKER_NODES=$(tail -n+2 $PBS_NODEFILE)
|
||||
|
||||
export DASK_SCHEDULER_PORT=8786
|
||||
export DASK_UI_PORT=8787
|
||||
|
||||
export DASK_ENV="$HOME/dask"
|
||||
mkdir -p $DASK_ENV
|
||||
tar -xzf $CURRENT_WORKSPACE/dask-env.tar.gz -C $DASK_ENV
|
||||
chmod -R 700 $DASK_ENV
|
||||
|
||||
source $DASK_ENV/bin/activate
|
||||
conda-unpack
|
||||
|
||||
dask scheduler --host $SCHEDULER_NODE --port $DASK_SCHEDULER_PORT &
|
||||
export NUM_NODES=$(sort $PBS_NODEFILE |uniq | wc -l)
|
||||
|
||||
# Assuming you have a Dask worker script named 'dask-worker-script.py', modify this accordingly
|
||||
for ((i=1;i<$NUM_NODES;i++)); do
|
||||
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask Worker at $i"
|
||||
pbsdsh -n $i -o -- bash -l -c "source /deplyment_scripts/dask-worker.sh $CURRENT_WORKSPACE $SCHEDULER_NODE"
|
||||
done
|
||||
|
||||
python3 $PYTHON_FILE
|
|
@ -1,50 +0,0 @@
|
|||
#!/bin/bash
|
||||
#PBS -N ray-job
|
||||
#PBS -l select=2:node_type=rome
|
||||
#PBS -l walltime=1:00:00
|
||||
|
||||
export WS_DIR=<workspace_dir>
|
||||
export PROJECT_DIR=$WS_DIR/<project_name>
|
||||
export JOB_SCRIPT=monte-carlo-pi.py
|
||||
|
||||
export ENV_ARCHIVE=ray_env.tar.gz
|
||||
|
||||
export OBJECT_STORE_MEMORY=128000000000
|
||||
|
||||
# Environment variables after this line should not change
|
||||
|
||||
export SRC_DIR=$PROJECT_DIR/src
|
||||
export PYTHON_FILE=$SRC_DIR/$JOB_SCRIPT
|
||||
export DEPLOYMENT_SCRIPTS=$PROJECT_DIR/deployment_scripts
|
||||
export ENV_PATH=/run/user/$PBS_JOBID/ray_env # We use the ram disk to extract the environment packages since a large number of files decreases the performance of the parallel file system.
|
||||
|
||||
mkdir -p $ENV_PATH
|
||||
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH # This line extracts the packages to ram disk.
|
||||
source $ENV_PATH/bin/activate
|
||||
|
||||
export IP_ADDRESS=`ip addr show ib0 | grep -oP '(?<=inet\s)\d+(\.\d+){3}' | awk '{print $1}'`
|
||||
|
||||
export RAY_ADDRESS=$IP_ADDRESS:6379
|
||||
export REDIS_PASSWORD=$(openssl rand -base64 32)
|
||||
|
||||
export NCCL_DEBUG=INFO
|
||||
|
||||
ray start --disable-usage-stats \
|
||||
--head \
|
||||
--node-ip-address=$IP_ADDRESS \
|
||||
--port=6379 \
|
||||
--dashboard-host=127.0.0.1 \
|
||||
--redis-password=$REDIS_PASSWORD \
|
||||
--object-store-memory=$OBJECT_STORE_MEMORY
|
||||
|
||||
export NUM_NODES=$(sort $PBS_NODEFILE |uniq | wc -l)
|
||||
|
||||
for ((i=1;i<$NUM_NODES;i++)); do
|
||||
pbsdsh -n $i -- bash -l -c "'$DEPLOYMENT_SCRIPTS/start-ray-worker.sh' '$WS_DIR' '$ENV_ARCHIVE' '$RAY_ADDRESS' '$REDIS_PASSWORD' '$OBJECT_STORE_MEMORY'" &
|
||||
done
|
||||
|
||||
python3 $PYTHON_FILE
|
||||
|
||||
ray stop --grace-period 30
|
||||
|
||||
rm -rf $ENV_PATH # It's nice to clean up before you terminate the job.
|
|
@ -1,54 +0,0 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import ray"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"ray.init()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"cluster_resources = ray.available_resources()\n",
|
||||
"available_cpu_cores = cluster_resources.get('CPU', 0)\n",
|
||||
"print(cluster_resources)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "ray",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
|
@ -1,38 +0,0 @@
|
|||
Create the container on the login node:
|
||||
|
||||
```bash
|
||||
export WS_DIR=$(ws_find workspace_dir) # adjust this
|
||||
cd $WS_DIR
|
||||
wget https://fex.hlrs.de/fop/FYaJqyzw/ray.tar # download the container archive
|
||||
export CONTAINER_NAME=ray
|
||||
export CONTAINER_TAG=latest
|
||||
export UDOCKER_DIR="$WS_DIR/.udocker/" # to store the image layers
|
||||
udocker images -l # this will create a repo the first time you use it
|
||||
udocker rmi $CONTAINER_NAME:$CONTAINER_TAG # results in error since the image does not exist
|
||||
udocker load -i $WS_DIR/$CONTAINER_NAME.tar $CONTAINER_NAME
|
||||
rm /$WS_DIR/$CONTAINER_NAME.tar # you no longer need the tar archive
|
||||
```
|
||||
|
||||
Allocate a CPU node, and then:
|
||||
|
||||
```bash
|
||||
module load bigdata/udocker/1.3.4
|
||||
export WS_DIR=$(ws_find workspace_dir) # adjust this
|
||||
export UDOCKER_DIR="$WS_DIR/.udocker/"
|
||||
export UDOCKER_CONTAINERS="/run/user/$PBS_JOBID/udocker/containers"
|
||||
mkdir -p $UDOCKER_CONTAINERS
|
||||
mkdir -p /run/user/$PBS_JOBID/tmp
|
||||
export CONTAINER_NAME=ray
|
||||
export CONTAINER_TAG=latest
|
||||
udocker create --name=$CONTAINER_NAME:$CONTAINER_TAG
|
||||
udocker ps
|
||||
udocker run --volume $WS_DIR:/workspace --volume /run/user/$PBS_JOBID/tmp:/tmp $CONTAINER_NAME
|
||||
```
|
||||
|
||||
You should see a Python shell.
|
||||
|
||||
```python
|
||||
import ray
|
||||
# ray.init(num_cpus=4) # Works with a small number of CPUs
|
||||
ray.init() # But, it can't use all the available CPUs
|
||||
```
|
16
src/dask-example-pi.py
Normal file
16
src/dask-example-pi.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
import dask.bag as db
|
||||
import random
|
||||
from dask.distributed import Client
|
||||
|
||||
client = Client(str(os.getenv('HOSTNAME')) + "-ib:8786")
|
||||
NUM_SAMPLES=100
|
||||
|
||||
def inside(p):
|
||||
x, y = random.random(), random.random()
|
||||
return x*x + y*y < 1
|
||||
|
||||
def calc_pi():
|
||||
count = db.from_sequence(range(0, NUM_SAMPLES)).filter(inside).count().compute()
|
||||
return 4.0 * count / NUM_SAMPLES
|
||||
|
||||
print(calc_pi())
|
|
@ -1,89 +0,0 @@
|
|||
# Adopted from: https://docs.ray.io/en/releases-2.8.0/ray-core/examples/monte_carlo_pi.html
|
||||
|
||||
import ray
|
||||
import math
|
||||
import time
|
||||
import random
|
||||
import os
|
||||
|
||||
# Change this to match your cluster scale.
|
||||
NUM_SAMPLING_TASKS = 100
|
||||
NUM_SAMPLES_PER_TASK = 10_000_000
|
||||
TOTAL_NUM_SAMPLES = NUM_SAMPLING_TASKS * NUM_SAMPLES_PER_TASK
|
||||
|
||||
@ray.remote
|
||||
class ProgressActor:
|
||||
def __init__(self, total_num_samples: int):
|
||||
self.total_num_samples = total_num_samples
|
||||
self.num_samples_completed_per_task = {}
|
||||
|
||||
def report_progress(self, task_id: int, num_samples_completed: int) -> None:
|
||||
self.num_samples_completed_per_task[task_id] = num_samples_completed
|
||||
|
||||
def get_progress(self) -> float:
|
||||
return (
|
||||
sum(self.num_samples_completed_per_task.values()) / self.total_num_samples
|
||||
)
|
||||
|
||||
@ray.remote
|
||||
def sampling_task(num_samples: int, task_id: int,
|
||||
progress_actor: ray.actor.ActorHandle) -> int:
|
||||
num_inside = 0
|
||||
for i in range(num_samples):
|
||||
x, y = random.uniform(-1, 1), random.uniform(-1, 1)
|
||||
if math.hypot(x, y) <= 1:
|
||||
num_inside += 1
|
||||
|
||||
# Report progress every 1 million samples.
|
||||
if (i + 1) % 1_000_000 == 0:
|
||||
# This is async.
|
||||
progress_actor.report_progress.remote(task_id, i + 1)
|
||||
|
||||
# Report the final progress.
|
||||
progress_actor.report_progress.remote(task_id, num_samples)
|
||||
return num_inside
|
||||
|
||||
def wait_for_nodes(expected_num_nodes: int):
|
||||
while True:
|
||||
num_nodes = len(ray.nodes())
|
||||
if num_nodes >= expected_num_nodes:
|
||||
break
|
||||
print(f'Currently {num_nodes} nodes connected. Waiting for more...')
|
||||
time.sleep(5) # wait for 5 seconds before checking again
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
num_nodes = int(os.environ["NUM_NODES"])
|
||||
assert num_nodes > 1, "If the environment variable NUM_NODES is set, it should be greater than 1."
|
||||
|
||||
redis_password = os.environ["REDIS_PASSWORD"]
|
||||
ray.init(address="auto", _redis_password=redis_password)
|
||||
|
||||
wait_for_nodes(num_nodes)
|
||||
|
||||
cluster_resources = ray.available_resources()
|
||||
print(cluster_resources)
|
||||
|
||||
# Create the progress actor.
|
||||
progress_actor = ProgressActor.remote(TOTAL_NUM_SAMPLES)
|
||||
|
||||
# Create and execute all sampling tasks in parallel.
|
||||
results = [
|
||||
sampling_task.remote(NUM_SAMPLES_PER_TASK, i, progress_actor)
|
||||
for i in range(NUM_SAMPLING_TASKS)
|
||||
]
|
||||
|
||||
# Query progress periodically.
|
||||
while True:
|
||||
progress = ray.get(progress_actor.get_progress.remote())
|
||||
print(f"Progress: {int(progress * 100)}%")
|
||||
|
||||
if progress == 1:
|
||||
break
|
||||
|
||||
time.sleep(1)
|
||||
|
||||
# Get all the sampling tasks results.
|
||||
total_num_inside = sum(ray.get(results))
|
||||
pi = (total_num_inside * 4) / TOTAL_NUM_SAMPLES
|
||||
print(f"Estimated value of π is: {pi}")
|
Loading…
Reference in a new issue