Compare commits

...

12 commits

19 changed files with 490 additions and 795 deletions

12
.gitignore vendored Normal file
View file

@ -0,0 +1,12 @@
# Compiled source
__pycache__
# Packages
*.gz
*.rar
*.tar
*.zip
# OS generated files
.DS_Store

162
README.md
View file

@ -1,108 +1,162 @@
# Dask: How to execute python workloads using a Dask cluster on Vulcan # Ray: How to launch a Ray Cluster on Hawk?
Wiki link: This guide shows you how to launch a Ray cluster on HLRS' Hawk system.
Motivation: This document aims to show users how to launch a Dask cluster in our compute platforms and perform a simple workload using it.
Structure:
- [ ] [Tutorial](https://diataxis.fr/tutorials/)
- [x] [How-to guide](https://diataxis.fr/how-to-guides/)
- [ ] [Reference](https://diataxis.fr/reference/)
- [ ] [Explanation](https://diataxis.fr/explanation/)
To do:
- [x] Made scripts for environment creation and deployment in the folder `local_scripts`
- [x] Changed scripts to `deployment_scripts`
- [x] Added step about sending python file
---
This repository looks at a deployment of a Dask cluster on Vulcan, and executing your programs using this cluster.
## Table of Contents ## Table of Contents
- [Ray: How to launch a Ray Cluster on Hawk?](#ray-how-to-launch-a-ray-cluster-on-hawk)
- [Table of Contents](#table-of-contents)
- [Prerequisites](#prerequisites) - [Prerequisites](#prerequisites)
- [Getting Started](#getting-started) - [Getting Started](#getting-started)
- [Usage](#usage) - [Launch a local Ray Cluster in Interactive Mode](#launch-a-local-ray-cluster-in-interactive-mode)
- [Notes](#notes) - [Launch a Ray Cluster in Batch Mode](#launch-a-ray-cluster-in-batch-mode)
## Prerequisites ## Prerequisites
Before running the application, make sure you have the following prerequisites installed in a conda environment: Before building the environment, make sure you have the following prerequisites:
- [Python 3.8.18](https://www.python.org/downloads/release/python-3818/): This specific python version is used for all uses, you can select it using while creating the conda environment. For more information on, look at the documentation for Conda on [HLRS HPC systems](https://kb.hlrs.de/platforms/index.php/How_to_move_local_conda_environments_to_the_clusters). - [Conda Installation](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html): Ensure that Conda is installed on your local system.
- [Conda Installation](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html): Ensure that Conda is installed on your local system. For more information on, look at the documentation for Conda on [HLRS HPC systems](https://kb.hlrs.de/platforms/index.php/How_to_move_local_conda_environments_to_the_clusters). - [Conda-Pack](https://conda.github.io/conda-pack/) installed in the base environment: Conda pack is used to package the Conda environment into a single tarball. This is used to transfer the environment to the target system.
- [Dask](https://dask.org/): Install Dask using conda. - `linux-64` platform for installing the Conda packages because Conda/pip downloads and installs precompiled binaries suitable to the architecture and OS of the local environment.
- [Conda Pack](https://conda.github.io/conda-pack/): Conda pack is used to package the Conda environment into a single tarball. This is used to transfer the environment to Vulcan.
For more information, look at the documentation for [Conda on HLRS HPC systems](https://kb.hlrs.de/platforms/index.php/How_to_move_local_conda_environments_to_the_clusters)
## Getting Started ## Getting Started
1. Clone [this repository](https://code.hlrs.de/hpcrsaxe/spark_template) to your local machine: Only the main and r channels are available using the conda module on the clusters. To use custom packages, we need to move the local conda environment to Hawk.
**Step 1.** Clone this repository to your local machine:
```bash ```bash
git clone <repository_url> git clone <repository_url>
``` ```
2. Go into the direcotry and create an environment using Conda and enirvonment.yaml. Note: Be sure to add the necessary packages in environemnt.yaml: **Step 2.** Go into the directory and create an environment using Conda and environment.yaml.
Note: Be sure to add the necessary packages in `deployment_scripts/environment.yaml`:
```bash ```bash
./deployment_scripts/create-env.sh <your-env> cd deployment_scripts
./create-env.sh <your-env>
``` ```
3. Send all files using `deploy-env.sh`: **Step 3.** Package the environment and transfer the archive to the target system:
```bash ```bash
./deployment_scripts/deploy-env.sh <your-env> <destination_host>:<destination_directory> (base) $ conda pack -n <your-env> -o ray_env.tar.gz # conda-pack must be installed in the base environment
``` ```
4. Send all the code to the appropriate directory on Vulcan using `scp`: A workspace is suitable to store the compressed Conda environment archive on Hawk. Proceed to the next step if you have already configured your workspace. Use the following command to create a workspace on the high-performance filesystem, which will expire in 10 days. For more information, such as how to enable reminder emails, refer to the [workspace mechanism](https://kb.hlrs.de/platforms/index.php/Workspace_mechanism) guide.
```bash ```bash
scp <your_script>.py <destination_host>:<destination_directory> ws_allocate hpda_project 10
ws_find hpda_project # find the path to workspace, which is the destination directory in the next step
``` ```
5. SSH into Vulcan and start a job interatively using: You can send your data to an existing workspace using:
```bash ```bash
qsub -I -N DaskJob -l select=4:node_type=clx-21 -l walltime=02:00:00 scp ray_env.tar.gz <username>@hawk.hww.hlrs.de:<workspace_directory>
rm ray_env.tar.gz # We don't need the archive locally anymore.
``` ```
6. Go into the directory with all code: **Step 4.** Clone the repository on Hawk to use the deployment scripts and project structure:
```bash ```bash
cd <destination_directory> cd <workspace_directory>
git clone <repository_url>
``` ```
7. Initialize the Dask cluster: ## Launch a local Ray Cluster in Interactive Mode
Using a single node interactively provides opportunities for faster code debugging.
**Step 1.** On the Hawk login node, start an interactive job using:
```bash ```bash
source deploy-dask.sh "$(pwd)" qsub -I -l select=1:node_type=rome -l walltime=01:00:00
``` ```
Note: At the moment, the deployment is verbose, and there is no implementation to silence the logs.
Note: Make sure all permissions are set using `chmod +x` for all scripts.
## Usage **Step 2.** Go into the project directory:
To run the application interactively, execute the following command after all the cluster's nodes are up and running:
```bash ```bash
python cd <project_directory>/deployment_scripts
``` ```
Or to run a full script: **Step 3.** Deploy the conda environment to the ram disk:
Change the following line by editing `deploy-env.sh`:
```bash ```bash
python <your-script>.py export WS_DIR=<workspace_dir>
``` ```
Note: If you don't see your environment in the python interpretor, then manually activate it using: Then, use the following command to deploy and activate the environment:
```bash ```bash
conda activate <your-env> source deploy-env.sh
``` ```
Do this before using the python interpretor. Note: Make sure all permissions are set using `chmod +x`.
## Notes **Step 4.** Initialize the Ray cluster.
You can use a Python interpreter to start a local Ray cluster:
Note: Dask Cluster is set to verbose, add the following to your code while connecting to the Dask cluster:
```python ```python
client = Client(..., silence_logs='error') import ray
ray.init()
``` ```
Note: Replace all filenames within `<>` with the actual values applicable to your project. **Step 5.** Connect to the dashboard.
Warning: Do not change the default dashboard host `127.0.0.1` to keep Ray cluster reachable by only you.
Note: We recommend using a dedicated Firefox profile for accessing web-based services on HLRS Compute Platforms. If you haven't created a profile, check out our [guide](https://kb.hlrs.de/platforms/index.php/How_to_use_Web_Based_Services_on_HLRS_Compute_Platforms).
You need the job id and the hostname for your current job. You can obtain this information on the login node using:
```bash
qstat -anw # get the job id and the hostname
```
Then, on your local computer,
```bash
export PBS_JOBID=<job-id> # e.g., 2316419.hawk-pbs5
ssh <compute-host> # e.g., r38c3t8n3
```
Check your SSH config in the first step if this doesn't work.
Then, launch Firefox web browser using the configured profile. Open `localhost:8265` to access the Ray dashboard.
## Launch a Ray Cluster in Batch Mode
Let us [estimate the value of π](https://docs.ray.io/en/releases-2.8.0/ray-core/examples/monte_carlo_pi.html) as an example application.
**Step 1.** Add execution permissions to `start-ray-worker.sh`
```bash
cd deployment_scripts
chmod +x start-ray-worker.sh
```
**Step 2.** Submit a job to launch the head and worker nodes.
You must modify the following lines in `submit-ray-job.sh`:
- Line 3 changes the cluster size. The default configuration launches a 3 node cluster.
- `export WS_DIR=<workspace_dir>` - set the correct workspace directory.
- `export PROJECT_DIR=$WS_DIR/<project_name>` - set the correct project directory.
Note: The job script `src/monte-carlo-pi.py` waits for all nodes in the Ray cluster to become available. Preserve this pattern in your Python code while using a multiple node Ray cluster.
Launch the job and monitor the progress. As the job starts, its status (S) shifts from Q (Queued) to R (Running). Upon completion, the job will no longer appear in the `qstat -a` display.
```bash
qsub submit-ray-job.pbs
qstat -anw # Q: Queued, R: Running, E: Ending
ls -l # list files after the job finishes
cat ray-job.o... # inspect the output file
cat ray-job.e... # inspect the error file
```
If you need to delete the job, use `qdel <job-id>`. If this doesn't work, use the `-W force` option: `qdel -W force <job-id>`

View file

@ -19,7 +19,5 @@ else
echo "Environment '$CONDA_ENV_NAME' does not exist, creating it." echo "Environment '$CONDA_ENV_NAME' does not exist, creating it."
# Create Conda environment # Create Conda environment
conda env create --name $CONDA_ENV_NAME -f environment.yaml CONDA_SUBDIR=linux-64 conda env create --name $CONDA_ENV_NAME -f environment.yaml
echo "Conda environment '$CONDA_ENV_NAME' created."
fi fi

View file

@ -1,31 +0,0 @@
#!/bin/bash
#Get the current workspace directory and the master node
export CURRENT_WORKSPACE=$1
export DASK_SCHEDULER_HOST=$2
# Path to localscratch
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Setting up Dask environment"
export DASK_ENV="/localscratch/${PBS_JOBID}/dask"
mkdir -p $DASK_ENV
# Extract Dask environment in localscratch
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Extracting Dask environment to $DASK_ENV"
tar -xzf $CURRENT_WORKSPACE/dask-env.tar.gz -C $DASK_ENV
chmod -R 700 $DASK_ENV
# Start the dask environment
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Setting up Dask environment"
source $DASK_ENV/bin/activate
conda-unpack
# Start Dask worker
export DASK_SCHEDULER_PORT="8786" # Replace with the port on which the Dask scheduler is running
# Additional Dask worker options can be added here if needed
# Change local directory if memory is an issue
# Change directory to localscratch and start Dask worker
cd $DASK_ENV
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Worker $HOSTNAME] INFO: Starting Dask worker at $DASK_SCHEDULER_HOST on port $DASK_SCHEDULER_PORT"
dask worker $DASK_SCHEDULER_HOST:$DASK_SCHEDULER_PORT

View file

@ -1,54 +0,0 @@
#!/bin/bash
export CURRENT_WORKSPACE=$1
# Check if running in a PBS Job environment
if [ -z ${PBS_NODEFILE+x} ]; then
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] ERROR: This script is meant to run as a part of PBS Job. Don't start it at login nodes."
exit 1
fi
export NUM_NODES=$(wc -l < $PBS_NODEFILE)
if [ $NUM_NODES -lt 2 ]; then
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] WARNING: You have a single node job running. Dask cluster requires at least 2 nodes."
exit 1
fi
export ALL_NODES=$(cat $PBS_NODEFILE)
export SCHEDULER_NODE="$(head -n1 $PBS_NODEFILE)-ib"
export WORKER_NODES=$(tail -n+2 $PBS_NODEFILE)
export DASK_SCHEDULER_PORT=8786
export DASK_UI_PORT=8787
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask cluster with $NUM_NODES nodes."
# Path to localscratch
export DASK_ENV="/localscratch/${PBS_JOBID}/dask"
mkdir -p $DASK_ENV
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Extracting Dask environment to $DASK_ENV"
# Extract Dask environment in localscratch
tar -xzf $CURRENT_WORKSPACE/dask-env.tar.gz -C $DASK_ENV
chmod -R 700 $DASK_ENV
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Setting up Dask environment"
# Start the dask environment
source $DASK_ENV/bin/activate
conda-unpack
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask Scheduler at $SCHEDULER_NODE on port $DASK_SCHEDULER_PORT"
dask scheduler --host $SCHEDULER_NODE --port $DASK_SCHEDULER_PORT &
export NUM_NODES=$(sort $PBS_NODEFILE |uniq | wc -l)
# Assuming you have a Dask worker script named 'dask-worker-script.py', modify this accordingly
for ((i=1;i<$NUM_NODES;i++)); do
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Starting Dask Worker at $i"
pbsdsh -n $i -o -- bash -l -c "source $CURRENT_WORKSPACE/dask-worker.sh $CURRENT_WORKSPACE $SCHEDULER_NODE"
done
echo "[$(date '+%Y-%m-%d %H:%M:%S') - Master] INFO: Dask cluster ready, wait for workers to connect to the scheduler."
# Optionally, you can provide a script for the workers to execute using ssh, similar to Spark.
# Example: ssh $node "source activate your_conda_env && python your_dask_worker_script.py" &

View file

@ -1,41 +1,43 @@
#!/bin/bash #!/bin/bash
# Check if a destination and environment name are provided export WS_DIR=<workspace_dir>
if [ "$#" -ne 2 ]; then
echo "Usage: $0 <environment_name> <destination_directory>"
exit 1
fi
# Name of the Conda environment # Get the first character of the hostname
CONDA_ENV_NAME="$1" first_char=$(hostname | cut -c1)
TAR_FILE="$CONDA_ENV_NAME.tar.gz"
# Check if the tar.gz file already exists # Check if the first character is not "r"
if [ -e "$TAR_FILE" ]; then if [[ $first_char != "r" ]]; then
echo "Using existing $TAR_FILE" # it's not a cpu node.
echo "Hostname does not start with 'r'."
# Get the first seven characters of the hostname
first_seven_chars=$(hostname | cut -c1,2,3,4,5,6,7)
# Check if it is an ai node
if [[ $first_seven_chars != "hawk-ai" ]]; then
echo "Hostname does not start with 'hawk-ai' too. Exiting."
return 1
else else
# Pack the Conda environment if the file doesn't exist echo "GPU node detected."
conda pack -n "$CONDA_ENV_NAME" -o "$TAR_FILE" export OBJ_STR_MEMORY=350000000000
export TEMP_CHECKPOINT_DIR=/localscratch/$PBS_JOBID/model_checkpoints/
mkdir -p $TEMP_CHECKPOINT_DIR
fi fi
# Parse the destination host and directory
DESTINATION=$2
IFS=':' read -ra DEST <<< "$DESTINATION"
DEST_HOST="${DEST[0]}"
DEST_DIR="${DEST[1]}"
# Copy the environment tarball to the remote server
scp "$TAR_FILE" "$DEST_HOST":"$DEST_DIR"
scp deploy-dask.sh "$DEST_HOST":"$DEST_DIR"
scp dask-worker.sh "$DEST_HOST":"$DEST_DIR"
echo "Conda environment '$CONDA_ENV_NAME' packed and deployed to '$DEST_HOST:$DEST_DIR' as '$TAR_FILE'."
# Ask the user if they want to delete the tar.gz file
read -p "Do you want to delete the local tar.gz file? (y/n): " answer
if [ "$answer" == "y" ]; then
rm "$TAR_FILE"
echo "Local tar.gz file deleted."
else else
echo "Local tar.gz file not deleted." echo "CPU node detected."
fi fi
module load bigdata/conda
export RAY_DEDUP_LOGS=0
export ENV_ARCHIVE=ray_env.tar.gz
export CONDA_ENVS=/run/user/$PBS_JOBID/envs
export ENV_NAME=ray_env
export ENV_PATH=$CONDA_ENVS/$ENV_NAME
mkdir -p $ENV_PATH
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH
source $ENV_PATH/bin/activate
export CONDA_ENVS_PATH=CONDA_ENVS

View file

@ -1,4 +1,4 @@
# Reference Guide: Dask Cluster Deployment Scripts # Reference: Cluster Deployment Scripts
Wiki link: Wiki link:

View file

@ -1,9 +1,23 @@
name: ray
channels: channels:
- defaults - defaults
- conda-forge
dependencies: dependencies:
- python=3.8.18 - python=3.10
- dask - pip
- numpy - pip:
- ray==2.8.0
- "ray[default]==2.8.0"
- dask==2022.10.1
- torch
- pydantic<2
- six
- torch
- tqdm
- pandas<2
- scikit-learn - scikit-learn
- conda-pack - matplotlib
- optuna
- seaborn
- tabulate
- jupyterlab
- autopep8

View file

@ -0,0 +1,27 @@
FROM python:3.9
# -------------------------------------------------------------------
# Install Ray and essential packages.
# For more information on Ray installation, see:
# https://docs.ray.io/en/latest/ray-overview/installation.html
# Install the latest Dask versions that are compatible with
# Ray nightly. For more information, see:
# https://docs.ray.io/en/latest/data/dask-on-ray.html
# -------------------------------------------------------------------
RUN pip install --no-cache-dir \
"ray==2.8.0" \
"ray[default]==2.8.0" \
"dask==2022.10.1" \
torch \
"pydantic<2" \
six \
"tqdm<2" \
"pandas<2" \
scikit-learn \
matplotlib \
optuna \
seaborn \
tabulate \
jupyterlab \
autopep8

View file

@ -0,0 +1,26 @@
#!/bin/bash
if [ $# -ne 5 ]; then
echo "Usage: $0 <ws_dir> <env_archive> <ray_address> <redis_password> <obj_store_memory>"
exit 1
fi
export WS_DIR=$1
export ENV_ARCHIVE=$2
export RAY_ADDRESS=$3
export REDIS_PASSWORD=$4
export OBJECT_STORE_MEMORY=$5
export ENV_PATH=/run/user/$PBS_JOBID/ray_env # We use the ram disk to extract the environment packages since a large number of files decreases the performance of the parallel file system.
mkdir -p $ENV_PATH
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH
source $ENV_PATH/bin/activate
conda-unpack
ray start --address=$RAY_ADDRESS \
--redis-password=$REDIS_PASSWORD \
--object-store-memory=$OBJECT_STORE_MEMORY \
--block
rm -rf $ENV_PATH # It's nice to clean up before you terminate the job

View file

@ -0,0 +1,50 @@
#!/bin/bash
#PBS -N ray-job
#PBS -l select=2:node_type=rome
#PBS -l walltime=1:00:00
export WS_DIR=<workspace_dir>
export PROJECT_DIR=$WS_DIR/<project_name>
export JOB_SCRIPT=monte-carlo-pi.py
export ENV_ARCHIVE=ray_env.tar.gz
export OBJECT_STORE_MEMORY=128000000000
# Environment variables after this line should not change
export SRC_DIR=$PROJECT_DIR/src
export PYTHON_FILE=$SRC_DIR/$JOB_SCRIPT
export DEPLOYMENT_SCRIPTS=$PROJECT_DIR/deployment_scripts
export ENV_PATH=/run/user/$PBS_JOBID/ray_env # We use the ram disk to extract the environment packages since a large number of files decreases the performance of the parallel file system.
mkdir -p $ENV_PATH
tar -xzf $WS_DIR/$ENV_ARCHIVE -C $ENV_PATH # This line extracts the packages to ram disk.
source $ENV_PATH/bin/activate
export IP_ADDRESS=`ip addr show ib0 | grep -oP '(?<=inet\s)\d+(\.\d+){3}' | awk '{print $1}'`
export RAY_ADDRESS=$IP_ADDRESS:6379
export REDIS_PASSWORD=$(openssl rand -base64 32)
export NCCL_DEBUG=INFO
ray start --disable-usage-stats \
--head \
--node-ip-address=$IP_ADDRESS \
--port=6379 \
--dashboard-host=127.0.0.1 \
--redis-password=$REDIS_PASSWORD \
--object-store-memory=$OBJECT_STORE_MEMORY
export NUM_NODES=$(sort $PBS_NODEFILE |uniq | wc -l)
for ((i=1;i<$NUM_NODES;i++)); do
pbsdsh -n $i -- bash -l -c "'$DEPLOYMENT_SCRIPTS/start-ray-worker.sh' '$WS_DIR' '$ENV_ARCHIVE' '$RAY_ADDRESS' '$REDIS_PASSWORD' '$OBJECT_STORE_MEMORY'" &
done
python3 $PYTHON_FILE
ray stop --grace-period 30
rm -rf $ENV_PATH # It's nice to clean up before you terminate the job.

View file

@ -1,413 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import dask\n",
"import random\n",
"import torch\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"from dask.distributed import Client\n",
"import dask.dataframe as dd\n",
"import pandas as pd\n",
"\n",
"from dask_ml.preprocessing import MinMaxScaler\n",
"from dask_ml.model_selection import train_test_split\n",
"from dask_ml.linear_model import LinearRegression\n",
"\n",
"from daskdataset import DaskDataset, ShallowNet\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"client = Client()\n",
"\n",
"sample_dataset=\"/home/hpcrsaxe/Desktop/Code/Dataset/sample_train_data/dataset1.parquet\"\n",
"\n",
"df = dd.read_parquet(sample_dataset, engine=\"fastparquet\")#.repartition(npartitions=10) #using pyarrow throws error with numpy"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Run this only on the cluster"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client = Client(str(os.getenv('HOSTNAME')) + \"-ib:8786\")\n",
"\n",
"sample_datasets=[\"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset1.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset2.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset3.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset4.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset5.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset6.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset7.parquet\",\n",
" \"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset8.parquet\",]\n",
"\n",
"df = dd.read_parquet(sample_datasets, engine=\"fastparquet\") "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Convert old Parquet to new Parquet"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-28 16:43:12,666 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 2.72 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:14,316 - distributed.worker.memory - WARNING - Worker is at 81% memory usage. Pausing worker. Process memory: 3.13 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:15,668 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:33977 (pid=48276) exceeded 95% memory budget. Restarting...\n",
"2023-11-28 16:43:15,946 - distributed.nanny - WARNING - Restarting worker\n",
"2023-11-28 16:43:21,786 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 2.74 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:23,443 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 3.09 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:24,862 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:46711 (pid=48247) exceeded 95% memory budget. Restarting...\n",
"2023-11-28 16:43:25,144 - distributed.nanny - WARNING - Restarting worker\n",
"2023-11-28 16:43:31,078 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 2.76 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:32,615 - distributed.worker.memory - WARNING - Worker is at 80% memory usage. Pausing worker. Process memory: 3.11 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:34,068 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:39735 (pid=48375) exceeded 95% memory budget. Restarting...\n",
"2023-11-28 16:43:34,366 - distributed.nanny - WARNING - Restarting worker\n",
"2023-11-28 16:43:40,997 - distributed.worker.memory - WARNING - Unmanaged memory use is high. This may indicate a memory leak or the memory may not be released to the OS; see https://distributed.dask.org/en/latest/worker-memory.html#memory-not-released-back-to-the-os for more information. -- Unmanaged memory: 2.72 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:42,760 - distributed.worker.memory - WARNING - Worker is at 81% memory usage. Pausing worker. Process memory: 3.13 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:43:44,718 - distributed.nanny.memory - WARNING - Worker tcp://127.0.0.1:43435 (pid=48187) exceeded 95% memory budget. Restarting...\n",
"2023-11-28 16:43:45,089 - distributed.nanny - WARNING - Restarting worker\n"
]
},
{
"ename": "KilledWorker",
"evalue": "Attempted to run task ('read-parquet-dfab612cdfb5b1c27377f316ddefebac', 0) on 3 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://127.0.0.1:43435. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html.",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKilledWorker\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[8], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# Compute the Dask dataframe to get a Pandas dataframe\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m df_pandas \u001b[38;5;241m=\u001b[39m \u001b[43mdf\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Create a new Pandas dataframe with the expanded 'features' columns\u001b[39;00m\n\u001b[1;32m 5\u001b[0m features_df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mDataFrame(df_pandas[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfeatures\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mto_list(), columns\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfeature_\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(df_pandas[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfeatures\u001b[39m\u001b[38;5;124m'\u001b[39m][\u001b[38;5;241m0\u001b[39m]))])\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/dask/base.py:314\u001b[0m, in \u001b[0;36mDaskMethodsMixin.compute\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcompute\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 291\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Compute this dask collection\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \n\u001b[1;32m 293\u001b[0m \u001b[38;5;124;03m This turns a lazy Dask collection into its in-memory equivalent.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 312\u001b[0m \u001b[38;5;124;03m dask.compute\u001b[39;00m\n\u001b[1;32m 313\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 314\u001b[0m (result,) \u001b[38;5;241m=\u001b[39m \u001b[43mcompute\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtraverse\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 315\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/dask/base.py:599\u001b[0m, in \u001b[0;36mcompute\u001b[0;34m(traverse, optimize_graph, scheduler, get, *args, **kwargs)\u001b[0m\n\u001b[1;32m 596\u001b[0m keys\u001b[38;5;241m.\u001b[39mappend(x\u001b[38;5;241m.\u001b[39m__dask_keys__())\n\u001b[1;32m 597\u001b[0m postcomputes\u001b[38;5;241m.\u001b[39mappend(x\u001b[38;5;241m.\u001b[39m__dask_postcompute__())\n\u001b[0;32m--> 599\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[43mschedule\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdsk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 600\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m repack([f(r, \u001b[38;5;241m*\u001b[39ma) \u001b[38;5;28;01mfor\u001b[39;00m r, (f, a) \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(results, postcomputes)])\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/client.py:3224\u001b[0m, in \u001b[0;36mClient.get\u001b[0;34m(self, dsk, keys, workers, allow_other_workers, resources, sync, asynchronous, direct, retries, priority, fifo_timeout, actors, **kwargs)\u001b[0m\n\u001b[1;32m 3222\u001b[0m should_rejoin \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 3223\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 3224\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgather\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpacked\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43masynchronous\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43masynchronous\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdirect\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3225\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 3226\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m f \u001b[38;5;129;01min\u001b[39;00m futures\u001b[38;5;241m.\u001b[39mvalues():\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/client.py:2359\u001b[0m, in \u001b[0;36mClient.gather\u001b[0;34m(self, futures, errors, direct, asynchronous)\u001b[0m\n\u001b[1;32m 2357\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 2358\u001b[0m local_worker \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 2359\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2360\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gather\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2361\u001b[0m \u001b[43m \u001b[49m\u001b[43mfutures\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2362\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2363\u001b[0m \u001b[43m \u001b[49m\u001b[43mdirect\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdirect\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2364\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_worker\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_worker\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2365\u001b[0m \u001b[43m \u001b[49m\u001b[43masynchronous\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43masynchronous\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2366\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/utils.py:351\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[0;34m(self, func, asynchronous, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 349\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m future\n\u001b[1;32m 350\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 351\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msync\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 352\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mloop\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcallback_timeout\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcallback_timeout\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 353\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/utils.py:418\u001b[0m, in \u001b[0;36msync\u001b[0;34m(loop, func, callback_timeout, *args, **kwargs)\u001b[0m\n\u001b[1;32m 416\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m error:\n\u001b[1;32m 417\u001b[0m typ, exc, tb \u001b[38;5;241m=\u001b[39m error\n\u001b[0;32m--> 418\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\u001b[38;5;241m.\u001b[39mwith_traceback(tb)\n\u001b[1;32m 419\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 420\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/utils.py:391\u001b[0m, in \u001b[0;36msync.<locals>.f\u001b[0;34m()\u001b[0m\n\u001b[1;32m 389\u001b[0m future \u001b[38;5;241m=\u001b[39m wait_for(future, callback_timeout)\n\u001b[1;32m 390\u001b[0m future \u001b[38;5;241m=\u001b[39m asyncio\u001b[38;5;241m.\u001b[39mensure_future(future)\n\u001b[0;32m--> 391\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01myield\u001b[39;00m future\n\u001b[1;32m 392\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 393\u001b[0m error \u001b[38;5;241m=\u001b[39m sys\u001b[38;5;241m.\u001b[39mexc_info()\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/tornado/gen.py:767\u001b[0m, in \u001b[0;36mRunner.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 765\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 766\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 767\u001b[0m value \u001b[38;5;241m=\u001b[39m \u001b[43mfuture\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 768\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 769\u001b[0m \u001b[38;5;66;03m# Save the exception for later. It's important that\u001b[39;00m\n\u001b[1;32m 770\u001b[0m \u001b[38;5;66;03m# gen.throw() not be called inside this try/except block\u001b[39;00m\n\u001b[1;32m 771\u001b[0m \u001b[38;5;66;03m# because that makes sys.exc_info behave unexpectedly.\u001b[39;00m\n\u001b[1;32m 772\u001b[0m exc: Optional[\u001b[38;5;167;01mException\u001b[39;00m] \u001b[38;5;241m=\u001b[39m e\n",
"File \u001b[0;32m~/miniconda3/envs/dask-env/lib/python3.8/site-packages/distributed/client.py:2222\u001b[0m, in \u001b[0;36mClient._gather\u001b[0;34m(self, futures, errors, direct, local_worker)\u001b[0m\n\u001b[1;32m 2220\u001b[0m exc \u001b[38;5;241m=\u001b[39m CancelledError(key)\n\u001b[1;32m 2221\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2222\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exception\u001b[38;5;241m.\u001b[39mwith_traceback(traceback)\n\u001b[1;32m 2223\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 2224\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m errors \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mskip\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n",
"\u001b[0;31mKilledWorker\u001b[0m: Attempted to run task ('read-parquet-dfab612cdfb5b1c27377f316ddefebac', 0) on 3 different workers, but all those workers died while running it. The last worker that attempt to run the task was tcp://127.0.0.1:43435. Inspecting worker logs is often a good next step to diagnose what went wrong. For more information see https://distributed.dask.org/en/stable/killed.html."
]
}
],
"source": [
"# Compute the Dask dataframe to get a Pandas dataframe\n",
"df_pandas = df.compute()\n",
"\n",
"# Create a new Pandas dataframe with the expanded 'features' columns\n",
"features_df = pd.DataFrame(df_pandas['features'].to_list(), columns=[f'feature_{i}' for i in range(len(df_pandas['features'][0]))])\n",
"labels_df = pd.DataFrame(df_pandas['labels'].to_list(), columns=[f'label_{i}' for i in range(len(df_pandas['labels'][0]))])\n",
"\n",
"# Concatenate the original dataframe with the expanded features and labels dataframes\n",
"df_pandas = pd.concat([features_df, labels_df], axis=1)\n",
"\n",
"#save df_pandas a parquet\n",
"df_pandas.to_parquet(\"/home/hpcrsaxe/Desktop/Code/Dataset/sample_train_data/dataset1.parquet\", engine=\"fastparquet\")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"#separate the features and labels\n",
"df_labels = df.loc[:, df.columns.str.contains('label')]\n",
"\n",
"# Create a StandardScaler object\n",
"scaler_features = MinMaxScaler()\n",
"df_features_scaled = scaler_features.fit_transform(df.loc[:, df.columns.str.contains('feature')])\n",
"\n",
"#Split the data into training and test sets\n",
"X_train, X_test, y_train, y_test = train_test_split(df_features_scaled, df_labels, shuffle=True)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-28 16:58:28,387 - distributed.worker.memory - WARNING - Worker is at 81% memory usage. Pausing worker. Process memory: 3.16 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:58:29,636 - distributed.worker.memory - WARNING - Worker is at 58% memory usage. Resuming worker. Process memory: 2.26 GiB -- Worker memory limit: 3.86 GiB\n"
]
}
],
"source": [
"X = torch.tensor(X_train.compute().values)\n",
"y = torch.tensor(y_train.compute().values)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-28 16:52:11,130 - distributed.worker.memory - WARNING - Worker is at 81% memory usage. Pausing worker. Process memory: 3.15 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 16:52:12,561 - distributed.worker.memory - WARNING - Worker is at 58% memory usage. Resuming worker. Process memory: 2.25 GiB -- Worker memory limit: 3.86 GiB\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4860\n"
]
}
],
"source": [
"from skorch import NeuralNetRegressor\n",
"import torch.optim as optim\n",
"\n",
"niceties = {\n",
" \"callbacks\": False,\n",
" \"warm_start\": False,\n",
" \"train_split\": None,\n",
" \"max_epochs\": 5,\n",
"}\n",
"\n",
"model = NeuralNetRegressor(\n",
" module=ShallowNet,\n",
" module__n_features=X.size(dim=1),\n",
" criterion=nn.MSELoss,\n",
" optimizer=optim.SGD,\n",
" optimizer__lr=0.1,\n",
" optimizer__momentum=0.9,\n",
" batch_size=64,\n",
" **niceties,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model = model.share_memory()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Re-initializing module because the following parameters were re-set: n_features.\n",
"Re-initializing criterion.\n",
"Re-initializing optimizer.\n",
" epoch train_loss dur\n",
"------- ------------ ------\n",
" 1 \u001b[36m0.3994\u001b[0m 4.5545\n"
]
},
{
"data": {
"text/plain": [
"<class 'skorch.regressor.NeuralNetRegressor'>[initialized](\n",
" module_=ShallowNet(\n",
" (layer1): Linear(in_features=4860, out_features=8, bias=True)\n",
" ),\n",
")"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.fit(X, y)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-11-28 17:00:11,618 - distributed.worker.memory - WARNING - Worker is at 81% memory usage. Pausing worker. Process memory: 3.13 GiB -- Worker memory limit: 3.86 GiB\n",
"2023-11-28 17:00:13,143 - distributed.worker.memory - WARNING - Worker is at 57% memory usage. Resuming worker. Process memory: 2.22 GiB -- Worker memory limit: 3.86 GiB\n"
]
}
],
"source": [
"test_X = torch.tensor(X_test.compute().values)\n",
"test_y = torch.tensor(y_test.compute().values)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-3.410176609207851\n"
]
}
],
"source": [
"print(model.score(test_X, test_y))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define the loss function and optimizer\n",
"criterion = torch.nn.CrossEntropyLoss()\n",
"optimizer = torch.optim.SGD(model.parameters(), lr=0.01)\n",
"# Move the model to the GPU\n",
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
"model = model.to(device)\n",
"# Distribute the model across workers\n",
"model = model.share_memory()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Train the model\n",
"for epoch in range(10):\n",
" for batch in dataloader:\n",
" # Split the batch across workers\n",
" batch = [b.to(device) for b in batch]\n",
" futures = client.map(lambda data: model(data[0]), batch)\n",
" # Compute the loss\n",
" losses = client.map(criterion, futures, batch[1])\n",
" loss = client.submit(torch.mean, client.gather(losses))\n",
" # Compute the gradients and update the model parameters\n",
" optimizer.zero_grad()\n",
" gradients = client.map(lambda loss, future: torch.autograd.grad(loss, future)[0], loss, futures)\n",
" gradients =client.submit(torch.mean, client.gather(gradients))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"client.map(lambda parameter, gradient: parameter.grad.copy_(gradient), model.parameters(), gradients)\n",
"optimizer.step()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dask_ml.linear_model import LinearRegression\n",
"from sklearn.linear_model import LinearRegression\n",
"\n",
"# Initialize the Linear Regression model\n",
"model = LinearRegression()\n",
"model.fit(X_train, y_train)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"new_dask_df = df['features'].apply(pd.Series, meta=meta)\n",
"new_dask_df.compute()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Use this code for PyArrow tables\n",
"\n",
"#import pyarrow as pa\n",
"\n",
"# Define schema for features and labels columns\n",
"#schema = pa.schema({\n",
" #'features': pa.list_(pa.float32()),\n",
" #'labels': pa.list_(pa.float32())\n",
"#})\n",
"\n",
"#import pyarrow.parquet as pq\n",
"#df = dd.from_pandas(pq.read_table(sample_dataset, schema=schema).to_pandas(), npartitions=10)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "dask-env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.18"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -0,0 +1,54 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import ray"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ray.init()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cluster_resources = ray.available_resources()\n",
"available_cpu_cores = cluster_resources.get('CPU', 0)\n",
"print(cluster_resources)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "ray",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -0,0 +1,38 @@
Create the container on the login node:
```bash
export WS_DIR=$(ws_find workspace_dir) # adjust this
cd $WS_DIR
wget https://fex.hlrs.de/fop/FYaJqyzw/ray.tar # download the container archive
export CONTAINER_NAME=ray
export CONTAINER_TAG=latest
export UDOCKER_DIR="$WS_DIR/.udocker/" # to store the image layers
udocker images -l # this will create a repo the first time you use it
udocker rmi $CONTAINER_NAME:$CONTAINER_TAG # results in error since the image does not exist
udocker load -i $WS_DIR/$CONTAINER_NAME.tar $CONTAINER_NAME
rm /$WS_DIR/$CONTAINER_NAME.tar # you no longer need the tar archive
```
Allocate a CPU node, and then:
```bash
module load bigdata/udocker/1.3.4
export WS_DIR=$(ws_find workspace_dir) # adjust this
export UDOCKER_DIR="$WS_DIR/.udocker/"
export UDOCKER_CONTAINERS="/run/user/$PBS_JOBID/udocker/containers"
mkdir -p $UDOCKER_CONTAINERS
mkdir -p /run/user/$PBS_JOBID/tmp
export CONTAINER_NAME=ray
export CONTAINER_TAG=latest
udocker create --name=$CONTAINER_NAME:$CONTAINER_TAG
udocker ps
udocker run --volume $WS_DIR:/workspace --volume /run/user/$PBS_JOBID/tmp:/tmp $CONTAINER_NAME
```
You should see a Python shell.
```python
import ray
# ray.init(num_cpus=4) # Works with a small number of CPUs
ray.init() # But, it can't use all the available CPUs
```

View file

@ -1,57 +0,0 @@
import os
import dask
import random
from dask.distributed import Client
import dask.dataframe as dd
import pandas as pd
from dask_ml.preprocessing import MinMaxScaler
from dask_ml.model_selection import train_test_split
from dask_ml.linear_model import LinearRegression
import torch
from torch.utils.data import Dataset, DataLoader
client = Client(str(os.getenv('HOSTNAME')) + "-ib:8786")
sample_datasets=["/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset1.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset2.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset3.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset4.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset5.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset6.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset7.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset8.parquet",]
#sample_dataset="/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset1.parquet"
df = dd.read_parquet(sample_datasets, engine="fastparquet").repartition(npartitions=300)
df_features = df.loc[:, df.columns.str.contains('feature')]
df_labels = df.loc[:, df.columns.str.contains('label')]
# Create a StandardScaler object
scaler_features = MinMaxScaler()
df_features_scaled = scaler_features.fit_transform(df_features)
#df_features_scaled = df_features_scaled.loc[:, df_features_scaled.columns.str.contains('feature')]
#Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(df_features_scaled, df_labels, random_state=0)
dataloader = DataLoader(df_features_scaled, batch_size=64, shuffle=True)
model = torch.nn.Sequential(
torch.nn.Linear(784, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 10)
)
#X_train = X_train.loc[:, X_train.columns.str.contains('feature')]
#y_train = y_train.loc[:, y_train.columns.str.contains('label')]
# Initialize the Linear Regression model
model = LinearRegression().fit(X_train, y_train)
score = model.score(X_test, y_test)

View file

@ -1,82 +0,0 @@
import os
import dask
import random
import torch
from torch.utils.data import Dataset, DataLoader
import time
from dask.distributed import Client
import dask.dataframe as dd
import pandas as pd
from joblib import parallel_backend
from dask_ml.preprocessing import MinMaxScaler
from dask_ml.model_selection import train_test_split
from dask_ml.linear_model import LinearRegression
from daskdataset import DaskDataset, ShallowNet
start_time = time.time()
client = Client(str(os.getenv('HOSTNAME')) + "-ib:8786")
sample_datasets=["/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset1.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset2.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset3.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset4.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset5.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset6.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset7.parquet",
"/lustre/nec/ws3/ws/hpcrsaxe-hpcrsaxe/datasets/dataset8.parquet",]
df = dd.read_parquet(sample_datasets, engine="fastparquet")#.repartition(partition_size="100MB")
#df_future = client.scatter(df)
#separate the features and labels
df_labels = df.loc[:, df.columns.str.contains('label')]
# Create a StandardScaler object
scaler_features = MinMaxScaler()
df_features_scaled = scaler_features.fit_transform(df.loc[:, df.columns.str.contains('feature')])
#Split the data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(df_features_scaled, df_labels, shuffle=True)
X = torch.tensor(X_train.compute().values)
y = torch.tensor(y_train.compute().values)
from skorch import NeuralNetRegressor
import torch.optim as optim
niceties = {
"callbacks": False,
"warm_start": False,
"train_split": None,
"max_epochs": 5,
}
model = NeuralNetRegressor(
module=ShallowNet,
module__n_features=X.size(dim=1),
criterion=nn.MSELoss,
optimizer=optim.SGD,
optimizer__lr=0.1,
optimizer__momentum=0.9,
batch_size=64,
**niceties,
)
# Initialize the Linear Regression model
model = LinearRegression()
model.fit(X_train.to_dask_array(lengths=True), y_train.to_dask_array(lengths=True))
end_time = time.time()
print("Time to load data: ", end_time - start_time)
dask_dataset = DaskDataset(X_train, y_train)
dataloader = DataLoader(dask_dataset, batch_size=64, shuffle=True)
for feature, label in dataloader:
print(feature)
print(label)
break

View file

@ -1,32 +0,0 @@
import torch
from torch.utils.data import Dataset, DataLoader
import dask.dataframe as dd
import torch.nn as nn
import torch.nn.functional as F
# Assuming you have a Dask DataFrame df with 'features' and 'labels' columns
class DaskDataset(Dataset):
def __init__(self, df_features, df_labels):
self.features = df_features.to_dask_array(lengths=True)
self.labels = df_labels.to_dask_array(lengths=True)
def __len__(self):
return self.features.size
def __getitem__(self, idx):
return torch.tensor(self.features.compute().values), torch.tensor(self.labels.compute().values)
class ShallowNet(nn.Module):
def __init__(self, n_features):
super().__init__()
self.layer1 = nn.Linear(n_features, 128)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(128, 8)
def forward(self, x):
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x

89
src/monte-carlo-pi.py Normal file
View file

@ -0,0 +1,89 @@
# Adopted from: https://docs.ray.io/en/releases-2.8.0/ray-core/examples/monte_carlo_pi.html
import ray
import math
import time
import random
import os
# Change this to match your cluster scale.
NUM_SAMPLING_TASKS = 100
NUM_SAMPLES_PER_TASK = 10_000_000
TOTAL_NUM_SAMPLES = NUM_SAMPLING_TASKS * NUM_SAMPLES_PER_TASK
@ray.remote
class ProgressActor:
def __init__(self, total_num_samples: int):
self.total_num_samples = total_num_samples
self.num_samples_completed_per_task = {}
def report_progress(self, task_id: int, num_samples_completed: int) -> None:
self.num_samples_completed_per_task[task_id] = num_samples_completed
def get_progress(self) -> float:
return (
sum(self.num_samples_completed_per_task.values()) / self.total_num_samples
)
@ray.remote
def sampling_task(num_samples: int, task_id: int,
progress_actor: ray.actor.ActorHandle) -> int:
num_inside = 0
for i in range(num_samples):
x, y = random.uniform(-1, 1), random.uniform(-1, 1)
if math.hypot(x, y) <= 1:
num_inside += 1
# Report progress every 1 million samples.
if (i + 1) % 1_000_000 == 0:
# This is async.
progress_actor.report_progress.remote(task_id, i + 1)
# Report the final progress.
progress_actor.report_progress.remote(task_id, num_samples)
return num_inside
def wait_for_nodes(expected_num_nodes: int):
while True:
num_nodes = len(ray.nodes())
if num_nodes >= expected_num_nodes:
break
print(f'Currently {num_nodes} nodes connected. Waiting for more...')
time.sleep(5) # wait for 5 seconds before checking again
if __name__ == "__main__":
num_nodes = int(os.environ["NUM_NODES"])
assert num_nodes > 1, "If the environment variable NUM_NODES is set, it should be greater than 1."
redis_password = os.environ["REDIS_PASSWORD"]
ray.init(address="auto", _redis_password=redis_password)
wait_for_nodes(num_nodes)
cluster_resources = ray.available_resources()
print(cluster_resources)
# Create the progress actor.
progress_actor = ProgressActor.remote(TOTAL_NUM_SAMPLES)
# Create and execute all sampling tasks in parallel.
results = [
sampling_task.remote(NUM_SAMPLES_PER_TASK, i, progress_actor)
for i in range(NUM_SAMPLING_TASKS)
]
# Query progress periodically.
while True:
progress = ray.get(progress_actor.get_progress.remote())
print(f"Progress: {int(progress * 100)}%")
if progress == 1:
break
time.sleep(1)
# Get all the sampling tasks results.
total_num_inside = sum(ray.get(results))
pi = (total_num_inside * 4) / TOTAL_NUM_SAMPLES
print(f"Estimated value of π is: {pi}")