diff --git a/README.md b/README.md index 6fb13a4..3861c62 100644 --- a/README.md +++ b/README.md @@ -43,28 +43,21 @@ Using a single node interactively provides opportunities for faster code debuggi qsub -I -l select=1:node_type=rome -l walltime=01:00:00 ``` -**Step 2.** Go into the project directory: +**Step 2.** Activate the Conda environment: ```bash -cd /deployment_scripts +# Load the Conda module +module load bigdata/conda +source activate # activates the base environment + +# List available Conda environments for verification purposes +conda env list + +# Activate a specific Conda environment. +conda activate ray_environment # you need to execute `source activate` first, or use `source [ENV_PATH]/bin/activate` ``` -**Step 3.** Deploy the conda environment to the ram disk: - -Change the following line by editing `deploy-env.sh`: - -```bash -export WS_DIR= -``` - -Then, use the following command to deploy and activate the environment: - -```bash -source deploy-env.sh -``` -Note: Make sure all permissions are set using `chmod +x`. - -**Step 4.** Initialize the Ray cluster. +**Step 3.** Initialize the Ray cluster. You can use a Python interpreter to start a local Ray cluster: @@ -74,7 +67,7 @@ import ray ray.init() ``` -**Step 5.** Connect to the dashboard. +**Step 4.** Connect to the dashboard. Warning: Do not change the default dashboard host `127.0.0.1` to keep Ray cluster reachable by only you.