31 lines
980 B
Markdown
31 lines
980 B
Markdown
|
Create the container on the login node:
|
||
|
|
||
|
```bash
|
||
|
export WS_DIR=$(ws_find workspace_dir) # adjust this
|
||
|
cd $WS_DIR
|
||
|
wget https://fex.hlrs.de/fop/FYaJqyzw/ray.tar # download the container archive
|
||
|
export CONTAINER_NAME=ray
|
||
|
export CONTAINER_TAG=latest
|
||
|
export UDOCKER_DIR="$WS_DIR/.udocker/" # to store the image layers
|
||
|
udocker images -l # this will create a repo the first time you use it
|
||
|
udocker rmi $CONTAINER_NAME:$CONTAINER_TAG # results in error since the image does not exist
|
||
|
udocker load -i $WS_DIR/$CONTAINER_NAME.tar $CONTAINER_NAME
|
||
|
rm /$WS_DIR/$CONTAINER_NAME.tar # you no longer need the tar archive
|
||
|
```
|
||
|
|
||
|
Allocate a CPU node:
|
||
|
|
||
|
```bash
|
||
|
module load bigdata/udocker/1.3.4
|
||
|
export WS_DIR=$(ws_find benchmarks)
|
||
|
udocker run --volume $WS_DIR:/workspace --volume /run/user/$PBS_JOBID/tmp:/tmp $CONTAINER_NAME
|
||
|
```
|
||
|
|
||
|
You should see a Python shell.
|
||
|
|
||
|
```python
|
||
|
import ray
|
||
|
# ray.init(num_cpus=4) # Works with a small number of CPUs
|
||
|
ray.init() # But, it can't use all the available CPUs
|
||
|
```
|